Steamtables for Mathcad, v0.3 Copyright (C) 2010 Chris de Jonge Email: chrisdejonge611@hotmail.com

appVersion(4) = "0.99.7691.4821"

Installation instructions

Installation is very simple, just put the 2 .dll files in the UserEFI folder in the mathcad program folder (ex. C:\Program Files\MathSoft\Mathcad 2001i Professional\UserEFI). Mathcad automatically looks for plugins and loads them on startup.

I have tested this on Mathcad 2001i and Mathcad 14, so it should probably work in any other version of mathcad, too.

This mathcad plugin makes use of XSteam, a Freeware Steam and water properties library on the "International Association for Properties of Water and Steam Industrial Formulation 1997 (IAPWS IF-97). A full implementation of the IF-97 standard that provides very accurate steam and water properties in ranges from 0-1000 bar and 0-2000°C for use in process Engineering Industry.

Provided thermodynamic properties are:

- Temperature
- Pressure
- Enthalpy
- Specific volume
- Density
- Specific entropy
- Specific internal energy
- Specific isobaric heat capacity
- Specific isochoric heat capacity
- Speed of sound
- Viscosity
- Vapour fraction

All properties can be calculated with the inputs, p and T known, p and h known, h and s known and some with pressure and density known.

An examples.mcd file is provided with the functions available (or look on http://www.x-eng.com/XSteam_Information.htm for a extended list of functions available from the xsteam library, although I haven't implemented all of them, just the ones I required (I'm lazy, I know).

Just email me if you need any other functions from the xsteam library I haven't implemented. Or just implement them yourself, the source code is provided (written in Visual C++ 2005, I don't know if it will work with any other compiler). I'll probably implement the rest of the functions in future releases.

Saturation temperature at every pressure

All available functions in the XSteam DLL

1. Saturation temperature: Tsat_p(1) = 99.61

- 2. Temperture as a function of pressure and enthalpy: T ph(1, 100) = 23.84
- 3. Temperture as a function of pressure and entropy:

 $T_ps(1, 1) = 73.71$

- 4. Temperture as a function of enthalpy and entropy: T_hs(100, 0.2)=13.85
- 5. Saturation pressure: psat_T(100) = 1.01
- 6. Pressure as a function of h and s: p

 $p_hs(84, 0.296) = 2.3$

7. Pressure as a function of enthalpy and density:

 $p_hrho(2000, 5) = 6.05$

8. Saturated vapour enthalpy:	$hV_p(1) = 2674.95$
9. Saturated liquid enthalpy:	$hL_p(1) = 417.44$
10. Saturated vapour enthalpy:	$hV_T(100) = 2725.47$
11. Saturated liquid enthalpy:	hL_T(100) = 419.1

12. Entalpy as a function of pressure and temperature:

 $h_pT(1, 20) = 84.01$

13. Entalpy as a function of pressure and entropy:

 $h_ps(1, 1) = 308.61$

14. Entalpy as a function of pressure and vapour fraction: h px(1, 0.5) = 1546.19

15. Entalpy as a function of temperature and vapour fraction:

 $h_Tx(100, 0.5) = 1547.34$

16. Entalpy as a function of pressure and density.Observe for low temperatures (liquid) this equation has 2 solutions.(Not valid!!)

 $h_{prho}(1, 2) = 1082.77$

17. Saturated vapour volume:	vV_p(1)=1.69
18. Saturated liquid volume:	$vL_p(1) = 0$
19. Saturated vapour volume:	vV_T(100)=1.67
20. Saturated liquid volume:	$vL_T(1) = 0$

21. Specific volume as a function of pressure and temperature:

 $v_pT(1, 100) = 1.7$

22. Specific volume as a function of pressure and enthalpy:

 $v_ph(1, 1) = 0$

23. Specific volume as a function of pressure and entropy:

 $v_ps(1, 1) = 0$

24. Saturated vapour density:	$rhoV_p(1) = 0.59$
25. Saturated liquid density:	rhoL_p(1)=958.64
26. Saturated vapour density:	rhoV_T(100)=0.6
27. Saturated liquid density:	rhoL_T(100)=958.35

28. Density as a function of pressure and temperature:

 $rho_pT(1, 100) = 0.59$

29. Density as a function of pressure and enthalpy:

 $rho_ph(1, 1) = 999.86$

30. Density as a function of pressure and entropy:

 $rho_{ps}(1, 1) = 975.62$

31. Saturated vapour entropy:	$sV_p(1) = 7.36$
32. Saturated liquid entropy:	$sL_p(1) = 1.3$
33. Saturated vapour entropy:	$sV_T(100) = 7.35$

34. Saturated liquid entropy:

35. Specific entropy as a function of pressure and temperature (Returns saturated vapour entalpy if mixture:

 $s_pT(1, 100) = 7.36$

36. Specific entropy as a function of pressure and enthalpy:

 $s_ph(1, 1) = 0$