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Introduction 
The Intel® Ordinary Differential Equation Solver Library (Intel® ODE Solver Library) provides an application 
programming interface (API) for solving systems of Ordinary Differential Equations (ODE). The API includes 
universal and specialized ODE solver routines (see ODE Routines). These solvers are optimized for Intel® 
processors. Direct use of the universal ODE routine may be helpful to those who would like to find the 
method that best suits their problem. Specialized routines can be of interest to those who already know the 
property of their ODE systems and the proper method to solve them. All ODE routines can be called from C 
and Fortran, although the description of the input and output parameters uses Fortran conventions. C users 
can find routine calls specifics in the Calling ODE Routines from C section. 

ODE Implemented 
 
Intel® ODE Solver Library is intended for the numerical solution of initial value problems for a system of n 
ordinary differential equations with an arbitrary stiffness: y and f are vectors of dimension n, and 
 

dy / dt = f(t,y),  t>t0,  y(t0) is a given initial vector. 
 
Depending on the estimation of the problem stiffness, it is possible to use an explicit or implicit solver, as well 
as the solver with automatic choice of the scheme, in every integration step. The explicit part of the solver, 
intended to solve non-stiff and middle-stiff problems, is based on the 4th order Merson's method and on the 1st 
order multistage methods with extended stability domains. The main feature of the explicit method is the 
stability control without additional computations, which enables using the method with an extended domain of 
stability at almost no cost. This feature makes the explicit method efficient for the middle-stiff problems as 
well. The explicit solver can be used as the 1st order method with the fixed number of stages from 2 through 9 
or as the solver with automatic choice of the number of stages in every integration step. The technique is 
described in 
 

Novikov E.A. Application of explicit Runge-Kutta methods to solve stiff ODE's. Advances in Modeling 
& Analysis, A, AMSE Press, v.16, №1, 1992, p.23 -35. 

 
The implicit part of the solver is based on the L-stable (5,2)-method of the 4th order of accuracy. This method 
uses 2 right-hand side computations, a computation (numerical or analytical) of the Jacobi matrix, a 
decomposition of the matrix into triangular factors, and 5 solutions of the linear system. The algorithm 
suggests an option to freeze the Jacobi matrix and the corresponding matrix decomposition for a few 
integration steps. This feature helps to improve performance for slowly varying Jacobi matrices. In the Intel® 
ODE Solver Library, the frozen Jacobi matrix can be used for not more than 20 consecutive successful steps. 
The class of (m.k)-methods is described in  
  

Novikov E.A. Construction of the (m,k)–methods for the solution of linear systems of ordinary 
differential equations. Mathematical models and tools for Chemical Kinetics, AMSE Transactions 
'Scientific Siberian', Series A, v. 9, 1993, p.88 -103. 
 

 

ODE Routines 
 

Intel® MKL ODE Solver Library provides an interface to explicit, implicit, and mixed ODE solvers. In this 
manual, the interface is referred to as ODE interface. It implements a group of routines (ODE routines) used 
to compute the solution to stiff, non-stiff, and middle-stiff ODE systems. The ODE interface provides much 
flexibility of use: you can adjust routines to your particular needs at the cost of manual tuning routine 
parameters. To describe the Intel ODE interface, Fortran conventions are used. C users should refer to 
Calling ODE Routines from C.  
 
NOTE. Please pay attention to the difference between Fortran and C when addressing arrays: ipar(k) in 
Fortran corresponds to ipar[k-1] in C.  
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The library contains a number of routines intended to solve non-stiff, middle-stiff, stiff problems, and problems 
with a variable or a priori unknown stiffness. There are 5 basic routines: a routine based on the explicit 
Runge-Kutta type method of a variable order and stages in the 1st order scheme, 2 routines based on the 
implicit one-step L-stable (m.k)-method of the 4th order with a numerical or user-defined Jacobi matrix, and 2 
routines with automatic choice of the scheme and a numerical or user-defined Jacobi matrix for the implicit 
part. The library also contains a universal routine, which incorporates all the above methods in a single 
interface. This routine is mainly intended for experienced and research users. 
 
Below is the list of ODE routines and brief description of their purpose. 
 
dodesol A universal routine for solving ODE systems with an arbitrary stiffness; incorporates 

the functionality of all the five routines described below. 
 
dodesol_rkm9st A specialized routine for solving non-stiff and middle-stiff ODE systems using the 

explicit method, which is based on the 4th order Merson’s method and the 1st order 
multistage method of up to and including 9 stages with stability control.     

 
dodesol_mk52lfn A specialized routine for solving stiff ODE systems using the implicit method based 

on L-stable (5,2)-method with the numerical Jacobi matrix, which is computed by the 
routine.    

 
dodesol_mk52lfa A specialized routine for solving stiff ODE systems using the implicit method based 

on L-stable (5,2)-method with numerical or analytical computation of the Jacobi 
matrix. The user must provide a routine for this computation.  

 
dodesol_rkm9mkn A specialized routine for solving ODE systems with a variable or a priori unknown 

stiffness; automatically chooses the explicit or implicit scheme in every step and 
computes the numerical Jacobi matrix when necessary.    

 
dodesol_rkm9mka A specialized routine for solving ODE systems with a variable or a priori unknown 

stiffness; automatically chooses the explicit or implicit scheme in every step. The 
user must provide a routine for numerical or analytical computation of the Jacobi 
matrix. 

 
 
dodesol 
 

A universal routine for solving ODE systems with an arbitrary stiffness.  
 
NOTE: Each routine described below can be invoked from this interface through proper choice of 
parameters. This routine is recommended for research users who have gained sufficient experience in using  
the Intel® ODE Solver Library. 
 
Syntax 
 
FORTRAN: 
 
CALL dodesol(ipar,n,t,t_end,y,rhs,jacmat,h,hm,ep,tr,dpar,kd,ierr) 
 
C: 
 
dodesol(ipar,&n,&t,&t_end,y,rhs,jacmat,&h,&hm,&ep,&tr,dpar,kd,&ierr); 
 
Input / Output Parameters 
Parameter  Description 
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Parameter  Description 

ipar INTEGER (input/output) Array of length 128 containing control flags and some statistics.
    
NOTE: Avoid tuning the ipar array unless you have sufficient experience in 
using the Intel® ODE Solver Library. 

   ipar(1) First entry flag: default initial value is ipar(1)=0. After the first successful step, 
ipar(1)=1. 

   ipar(2) Integration scheme flag:  
     ipar(2)=0 – the explicit or implicit scheme is chosen automatically, 
     ipar(2)=1 – the Merson's method and the 1st order explicit up to 9-stage  
                          methods are used,  
     ipar(2)=2 – the implicit L-stable (5,2)-method of the 4th order is used. 
Default value is 0. 

   ipar(3) Exit flag:  
    ipar(3)=0  – exit at the end of the integration interval,  
    ipar(3)=1  – exit after every successful step.  
Default value is 0. 

   ipar(4) Jacobi matrix computation flag: 
     ipar(4)=0  – the routine computes the numerical Jacobi matrix. In this case   
                          jacmat is a dummy parameter that will not be used. 
     ipar(4)=1 – a user-defined routine computing the Jacobi matrix must be 

provided in the jacmat parameter. Can be used to provide an 
analytical Jacobi matrix. 

Default value is 0. 
   ipar(5) Jacobi matrix freezing flag: 

     ipar(5)=0  – freezing is not used. 
     ipar(5)=1  – freezing is used. 
Default value is 0. 

   ipar(6) Fixed explicit method flag:  
     ipar(6)=0 – the explicit part works as the method with a variable order of 

accuracy and a variable number of stages in the 1st order 
method, 

     ipar(6)=1 – the explicit part works as the Merson's method,  
     ipar(6)=k, 1<k<10  – the explicit part works as fixed k-stage 1st order method. 
Default initial value is 0.  

   ipar(7) Stability control  flag: 
     ipar(7)=0 – the stability is under control, 
     ipar(7)=1 – if ipar(6) is not equal to 0, the stability is not controlled. 
Default value is 0. 

   ipar(8) ipar(8)=k, 1<k<9 – the maximal number of stages in the 1st order k-stage
                                    method,  
ipar(8)=0  –  the maximal number of stages is 9.  
Default value is 0.   

ipar(k), 8<k<35 Parameters for internal use only. Initialize them with zeros prior to the first call to 
the routine. 

ipar(k), 34<k<129 Reserved for future use. Initialize these parameters with zeros prior to the first call 
to the routine. 

n INTEGER (input) Number of equations to be integrated. 
t DOUBLE PRECISION (input/output) Independent variable. By the end of integration, t is equal to 

t_end. 
t_end   
DOUBLE PRECISION 

(input) The end of integration interval. 

y  DOUBLE PRECISION (input/output) Array of dimension n containing the solution vector at a given 
moment t. Before the integration, y must contain the user-defined initial data for 
the problem. 
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Parameter  Description 

rhs (input) Pointer to the user-defined routine that computes the right-hand side of the 
ODE system. This routine has the following template:    
             

subroutine <name>(n, t, y, f) 
integer n 
double precision t, y(n), f(n) 
 .................. 
f(i) = ..... 
 .................. 
return 
end 

             
where parameters n, t, and y are input and the array f is output; <name> 
must be declared as external in the calling program. C users may consult C 
example to create their own routine. 

jacmat (input) Pointer to the user-defined routine that computes the Jacobi matrix (can 
be analytical) for the right-hand side of the ODE system. This routine has the 
following template:    
 

subroutine <name>(n, t, y, a) 
integer n 
double precision t, y(n), a(n,n) 
 ........................ 
a(i,j) = < df(i) / dy(j) > 
 ........................ 
return 
end 

             
where parameters n, t, and y are input and the array a is output; <name> 
must be declared as external in the calling program. C users may consult C 
example to create their own routine.  
NOTE: You may provide a dummy parameter instead of the routine if ipar(4)=0.  

h DOUBLE PRECISION (input/output) Step size. During the integration, h contains the size of the last 
successful step. 

hm   
DOUBLE PRECISION 

(input) Minimal step size. If the step control requires h for the next step to be less 
than hm, then h:=hm. The value of hm depends on physical sizes involved in the 
problem. For the normalized problem statements, it is recommended to use 
hm=1.d-12. 

ep   
DOUBLE PRECISION 

(input) Relative error tolerance, which must be small enough. The code cannot 
ensure the requested accuracy for ep<1.d-9. This parameter is used to control 
the step size.  

tr    
DOUBLE PRECISION 

(input) Threshold for control of the relative error. If |y(i)|>tr, then the relative 
error is controlled. Otherwise, the absolute error tr*ep is controlled. 

dpar  
DOUBLE PRECISION 

(output) Work array containing all intermediate stages of the methods. Allocate 
memory for dpar as double-precision array of length  

max{13*n,(7+2*n)*n}  if ipar(2)=0,   
13*n                             if ipar(2)=1, 
(7+2*n)*n                    if ipar(2)=2.  

kd    INTEGER (output) Work array of length n, which is used in the implicit scheme only. 
ierr INTEGER (output) Error flag. 
 
NOTE: The routine dodesol is recommended for research purposes of experienced users of the library. If 

you are searching the best routine that suites your needs, you can try different routines by 
appropriate varying of the flags in array ipar, which provides many specialized options. As a simpler 
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alternative, it is recommended to use one or several routines described below, which can be applied 
to a specific problem.  

 
 

dodesol_rkm9st   
 

A specialized routine for solving non-stiff and middle-stiff ODE systems using the explicit method 
based on the 4th order Merson’s method and the 1st order multistage method of up to and including 
9 stages with stability control. 
 
Syntax 
 
FORTRAN: 
 
CALL dodesol_rkm9st(ipar,n,t,t_end,y,rhs,h,hm,ep,tr,dpar,ierr) 
 
C: 
 
dodesol_rkm9st(ipar,&n,&t,&t_end,y,rhs,&h,&hm,&ep,&tr,dpar,&ierr); 
 
Input / Output Parameters 
Parameter  Description 

ipar INTEGER (input/output) Array of length 128 containing control flags and some statistics.
    
NOTE: Avoid tuning the ipar array unless you have sufficient experience in 
using the Intel® ODE Solver Library. 

   ipar(1) First entry flag: default initial value is ipar(1)=0. After the first successful step, 
ipar(1)=1. 

   ipar(2) For internal use only. 
   ipar(3) Exit flag:  

     ipar(3)=0  – exit at the end of the integration interval,  
     ipar(3)=1  – exit after every successful step.  
Default value is 0. 

   ipar(4), ipar(5) For internal use only. 
   ipar(6) Fixed explicit method flag:  

     ipar(6)=0 – the explicit part works as the method with a variable order of 
accuracy and a variable number of stages in the 1st order 
method, 

     ipar(6)=1 – the explicit part works as the Merson's method,  
     ipar(6)=k, 1<k<10  – the explicit part works as fixed the k-stage 1st order  
                                        method. 
Default initial value is 0.  

   ipar(7) Stability control  flag: 
     ipar(7)=0 – the stability is under control, 
     ipar(7)=1 – if ipar(6) is not equal to 0, the stability is not controlled. 
Default value is 0. 

   ipar(8) ipar(8)=k, 1<k<9 – the maximal number of stages in the 1st order k-stage
                                    method,  
ipar(8)=0  –  the maximal number of stages is 9.  
Default value is 0.   

ipar(k), 8<k<35 Parameters for internal use only. Initialize them with zeros prior to the first call to 
the routine. 

ipar(k), 34<k<129 Reserved for future use. Initialize these parameters with zeros prior to the first call 
to the routine. 
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The other parameters are the same as in dodesol. The exceptions are jacmat and kd, which are absent 
in   dodesol_rkm9st (see Syntax), and the length of array dpar, which is 13*n. 

 
NOTE. dodesol_rkm9st can be called from dodesol by setting ipar(2)=1. 
 

dodesol_mk52lfn   
 
A specialized routine for solving stiff ODE systems using the implicit method based on L-stable 
(5,2)-method with automatic numerical computation of the Jacobi matrix. 
 
Syntax 
 
FORTRAN: 
 
CALL dodesol_mk52lfn(ipar,n,t,t_end,y,rhs,h,hm,ep,tr,dpar,kd,ierr) 
 
C: 
 
Dodesol_mk52lfn(ipar,&n,&t,&t_end,y,rhs,&h,&hm,&ep,&tr,dpar,kd,&ierr); 

 
Input / Output Parameters 
 

Parameter  Description 

ipar INTEGER (input/output) Array of length 128 containing control flags and some statistics.
    
NOTE: Avoid tuning the ipar array unless you have sufficient experience in 
using the Intel® ODE Solver Library. 

   ipar(1),ipar(2) For internal use only. 
   ipar(3) Exit flag:  

     ipar(3)=0  – exit at the end of the integration interval,  
     ipar(3)=1  – exit after every successful step.  
Default value is 0. 

   ipar(4) For internal use only. 
   ipar(5) Jacobi matrix freezing flag: 

     ipar(5)=0  – freezing is not used. 
     ipar(5)=1  – freezing is used. 
Default value is 0. 

ipar(k), 5<k<35 Parameters for internal use only. Initialize them with zeros prior to the first call to 
the routine. 

ipar(k), 34<k<129 Reserved for future use. Initialize these parameters with zeros prior to the first call 
to the routine. 

 
The other parameters are the same as in dodesol. The exception is jacmat, which is absent in 
dodesol_mk52lfn (see Syntax), and the length of array dpar, which is (7+2*n)*n. 

 
NOTE. dodesol_mk52lfn can be called from dodesol by setting ipar(2)=2 and ipar(4)=0. 
 

dodesol_mk52lfa  
  

A specialized routine for solving stiff ODE systems using the implicit method based on L-stable 
(5,2)-method with a user-defined routine for numerical or analytical computation of the Jacobi 
matrix. 
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Syntax 
 
FORTRAN: 

 
CALL dodesol_mk52lfa(ipar,n,t,t_end,y,rhs,jacmat,h,hm,ep,tr,dpar,kd,ierr) 

 
C: 

 
dodesol_mk52lfa (ipar,&n,&t,&t_end,y,rhs,jacmat,&h,&hm,&ep,&tr,dpar,kd,&ierr); 
Input / Output Parameters 
 

Parameter  Description 

ipar INTEGER (input/output) Array of length 128 containing control flags and some statistics.  
  
NOTE: Avoid tuning the ipar array unless you have sufficient experience in 
using the Intel® ODE Solver Library. 

   ipar(1),ipar(2) For internal use only. 
   ipar(3) Exit flag:  

     ipar(3)=0  – exit at the end of the integration interval,  
     ipar(3)=1  – exit after every successful step.  
Default value is 0. 

   ipar(4) For internal use only. 
   ipar(5) Jacobi matrix freezing flag: 

     ipar(5)=0  – freezing is not used. 
     ipar(5)=1  – freezing is used. 
Default value is 0. 

ipar(k), 5<k<35 Parameters for internal use only. Initialize them with zeros prior to the first call to 
the routine. 

ipar(k), 34<k<129 Reserved for future use. Initialize these parameters with zeros prior to the first call 
to the routine. 

 
The other parameters are the same as in dodesol (see Syntax). The length of array dpar is (7+2*n)*n. 

 
NOTE. dodesol_mk52lfa can be called from dodesol by setting ipar(2)=2 and ipar(4)=1. 
 

 
dodesol_rkm9mkn   

 
A specialized routine for solving ODE systems with a variable or a priori unknown stiffness. 
Automatically chooses the explicit or implicit scheme and computes the numerical Jacobi matrix. 
 
Syntax 
 
FORTRAN: 
 
CALL dodesol_rkm9mkn(ipar,n,t,t_end,y,rhs,h,hm,ep,tr,dpar,kd,ierr) 
 
C: 
 
dodesol_rkm9mkn (ipar,&n,&t,&t_end,y,rhs,&h,&hm,&ep,&tr,dpar,kd,&ierr); 
 
Input / Output Parameters 
 

Parameter  Description 
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Parameter  Description 

ipar INTEGER (input/output) Array of length 128 containing control flags and some statistics.  
 
NOTE: Avoid tuning the ipar array unless you have sufficient experience in 
using the Intel® ODE Solver Library. 

   ipar(1) First entry flag: default initial value is ipar(1)=0. After the first successful step, 
ipar(1)=1. 

   ipar(2) For internal use only. 
   ipar(3) Exit flag:  

    ipar(3)=0  – exit at the end of the integration interval,  
    ipar(3)=1  – exit after every successful step.  
Default value is 0. 

   ipar(4) For internal use only. 
   ipar(5) Jacobi matrix freezing flag: 

     ipar(5)=0  – freezing is not used. 
     ipar(5)=1  – freezing is used. 
Default value is 0. 

   ipar(6) Fixed explicit method flag:  
     ipar(6)=0 – the explicit part works as the method with a variable order of 

accuracy and a variable number of stages in the 1st order 
method, 

     ipar(6)=1 – the explicit part works as the Merson's method,  
     ipar(6)=k, 1<k<10  – the explicit part works as the fixed k-stage 1st order  
                                         method. 
Default initial value is 0.  

   ipar(7) Stability control  flag: 
     ipar(7)=0 – the stability is under control, 
     ipar(7)=1 – if ipar(6) is not equal to 0, the stability is not controlled. 
Default value is 0. 

   ipar(8) ipar(8)=k, 1<k<9 – the maximal number of stages in the 1st  order k-stage
                                     method,  
ipar(8)=0  –  the maximal number of stages is 9.  
Default value is 0.   

ipar(k), 8<k<35 Parameters for internal use only. Initialize them with zeros prior to the first call to 
the routine. 

ipar(k), 34<k<129 Reserved for future use. Initialize these parameters with zeros prior to the first call 
to the routine. 

 
The other parameters are the same as in dodesol. The exception is jacmat, which is absent in 
dodesol_rkm9mkn (see Syntax), and the length of array dpar , which is max{13*n,(7+2*n)*n}. 

 
NOTE. dodesol_rkm9mka can be called from dodesol by setting ipar(2)=0 and ipar(4)=0. 

 
 
dodesol_rkm9mka   

 
A specialized routine for solving ODE systems with a variable or a priori unknown stiffness. 
Automatically chooses the explicit or implicit scheme and accepts a user-defined routine for 
numerical or analytical computation of the Jacobi matrix. 
 
Syntax 
 
FORTRAN: 
 
CALL dodesol_rkm9mka(ipar,n,t,t_end,y,rhs,jacmat,h,hm,ep,tr,dpar,kd,ierr) 
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C: 
 
dodesol_rkm9mka(ipar,&n,&t,&t_end,y,rhs,jacmat,&h,&hm,&ep,&tr,dpar,kd,&ierr); 
 
Input / Output Parameters 
Parameter  Description 

ipar INTEGER (input/output) Array of length 128 containing control flags and some statistics. 
   
NOTE: Avoid tuning the ipar array unless you have sufficient experience in 
using the Intel® ODE Solver Library. 

   ipar(1) First entry flag: default initial value is ipar(1)=0. After the first successful step, 
ipar(1)=1. 

   ipar(2) Parameter for internal use only. 
   ipar(3) Exit flag:  

     ipar(3)=0  – exit at the end of the integration interval,  
     ipar(3)=1  – exit after every successful step.  
Default value is 0. 

   ipar(4) Parameter for internal use only. 
   ipar(5) Jacobi matrix freezing flag: 

     ipar(5)=0  – freezing is not used. 
     ipar(5)=1  – freezing is used. 
Default value is 0. 

   ipar(6) Fixed explicit method flag:  
     ipar(6)=0 – the explicit part works as the method with a variable order of 

accuracy and a variable number of stages in the 1st order 
method, 

     ipar(6)=1 – the explicit part works as the Merson's method,  
     ipar(6)=k, 1<k<10  – the explicit part works as the fixed k-stage 1st order  
                                         method. 
Default initial value is 0.  

   ipar(7) Stability control  flag: 
     ipar(7)=0 – the stability is under control, 
     ipar(7)=1 – if ipar(6) is not equal to 0, the stability is not controlled. 
Default value is 0. 

   ipar(8) ipar(8)=k, 1<k<9 – the maximal number of stages in the 1st  order k-stage
                                     method,  
ipar(8)=0  –  the maximal number of stages is 9.  
Default value is 0.   

ipar(k), 8<k<35 Parameters for internal use only. Initialize them with zeros prior to the first call to 
the routine. 

ipar(k), 34<k<129 Reserved for future use. Initialize these parameters with zeros prior to the first call 
to the routine. 

 
The other parameters are the same as in dodesol (see Syntax). The length of array dpar is 
max{13*n,(7+2*n)*n}. 

 
NOTE. dodesol_rkm9mka can be called from dodesol by setting ipar(2)=0 and ipar(4)=1. 
 
 

Return Values 
 
ierr =  0   –  The routine has completed calculations normally. 
ierr = -100 – Error occurred: the number of equations n is less than zero.   
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ierr = -201 – Error occurred: the initial value of t is greater than the end of integration interval t_end. 
ierr = -202 – Error occurred: the initial step size h or minimal step size hm is non-positive.   
ierr = -203 – Error occurred: the relative error tolerance ep is non-positive.   
ierr = -204 – Error occurred: the threshold for control of the relative error is non-positive. 

 

Interfaces 
 
FORTRAN: 
 
SUBROUTINE dodesol(ipar,n,t,t_end,y,rhs,jacmat,h,hm,ep,tr,dpar,kd,ierr) 
INTEGER ipar(128), n, kd, ierr 
DOUBLE PRECISION t,t_end,y(*),h,hm,ep,tr,dpar(*) 
EXTERNAL rhs, jacmat 
 
SUBROUTINE dodesol_rkm9st(ipar,n,t,t_end,y,rhs,h,hm,ep,tr,dpar,ierr) 
INTEGER ipar(128), n, ierr 
DOUBLE PRECISION t,t_end,y(*),h,hm,ep,tr,dpar(*) 
EXTERNAL rhs 
 
SUBROUTINE dodesol_mk52lfn(ipar,n,t,t_end,y,rhs,h,hm,ep,tr,dpar,kd,ierr) 
INTEGER ipar(128), n, kd, ierr 
DOUBLE PRECISION t,t_end,y(*),h,hm,ep,tr,dpar(*) 
EXTERNAL rhs 
 
SUBROUTINE dodesol_mk52lfa(ipar,n,t,t_end,y,rhs,jacmat,h,hm,ep,tr,dpar,kd,ierr) 
INTEGER ipar(128), n, kd, ierr 
DOUBLE PRECISION t,t_end,y(*),h,hm,ep,tr,dpar(*) 
EXTERNAL rhs, jacmat 
 
SUBROUTINE dodesol_rkm9mkn(ipar,n,t,t_end,y,rhs,h,hm,ep,tr,dpar,kd,ierr) 
INTEGER ipar(128), n, kd, ierr 
DOUBLE PRECISION t,t_end,y(*),h,hm,ep,tr,dpar(*) 
EXTERNAL rhs 
 
SUBROUTINE dodesol_rkm9mka(ipar,n,t,t_end,y,rhs,jacmat,h,hm,ep,tr,dpar,kd,ierr) 
INTEGER ipar(128), n, kd, ierr 
DOUBLE PRECISION t,t_end,y(*),h,hm,ep,tr,dpar(*) 
EXTERNAL rhs, jacmat 
 

C: 
void dodesol(int*ipar, int*n, double*t, double*t_end, double*y, void*rhs(int*n, 

double*t, double*y,double*f), 
void*jacmat(int*n, double*t, double*y, double**a), double*h, 
double*hm, double*ep, double*tr, double*dpar, int*kd, 
int*ierr) 
 

void dodesol_rkm9st(int*ipar, int*n, double*t, double*t_end, double*y, 
void*rhs(int*n, double*t, double*y,double*f),double*h, 
double*hm, double*ep, double*tr, double*dpar,  int*ierr) 
 

void dodesol_mk52lfn(int*ipar, int*n, double*t, double*t_end, double*y, 
void*rhs(int*n, double*t, double*y,doble*f), double*h, 
double*hm, double*ep, double*tr, double*dpar, int*kd, 
int*ierr) 
 

void dodesol_mk52lfa(int*ipar, int*n, double*t, double*t_end, double*y, 
void*rhs(int*n, double*t, double*y,double*f), 
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void*jacmat(int*n, double*t, double*y, double**a), double*h, 
double*hm, double*ep, double*tr, double*dpar, int*kd, 
int*ierr) 
 

void dodesol_rkm9mkn(int*ipar, int*n, double*t, double*t_end, double*y, 
void*rhs(int*n, double*t, double*y,double*f), double*h, 
double*hm, double*ep, double*tr, double*dpar, int*kd, 
int*ierr) 
 

void dodesol_rkm9mka(int*ipar, int*n, double*t, double*t_end, double*y, 
void*rhs(int*n, double*t, double*y,double*f), 
void*jacmat(int*n, double*t, double*y, double**a), double*h, 
double*hm, double*ep, double*tr, double*dpar, int*kd, 
int*ierr) 

 
 

Calling ODE Routines from C 
 
The calling interface for all Intel ODE routines is designed to be easily used in Fortran. However, you can 
invoke each ODE routine directly from C if you are familiar with the inter-language calling conventions of your 
platform. The inter-language calling conventions include, but are not limited to, the argument passing 
mechanisms for the language, the data type mappings from Fortran to C, and decoration of Fortran external 
names on the platform. To promote portability and relieve a user of dealing with specifics of the calling 
conventions, C header file intel_ode.h declares a set of macros and introduces type definitions intended 
to hide the inter-language calling conventions and provide an interface to the routines that looks more natural 
(although not fully yet) in C. One of the key differences between C and Fortran is the language argument-
passing mechanism: C programs use pass-by-value semantics, and Fortran programs use pass-by-reference 
semantics. The Intel® ODE Solver Library retains pass-by-reference Fortran semantics for C calls. 
 
NOTE. Please pay attention to the difference between Fortran and C when addressing arrays: ipar(k) in 
Fortran corresponds to ipar[k-1] in C.  
 
 

Code Examples 
 

Code presented in this section computes solutions of initial value problem for the system of two ODEs 
describing nonlinear oscillations in Van der Pol generator. The 1st order ODE system has the following form: 
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with initial values , parameter 0)0(,2)0( 21 == yy λ defines the frequency of nonlinear oscillations. In the 

code below, 610=λ . For these values of the parameter and the length of integration interval, the Van der 
Pol equations provide an example of the problem with a variable stiffness. This example demonstrates the 
usage of all ODE routines. The Jacobi matrix for this system, which is used in some ODE routines, has the 
form: 
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NOTE. Usually the Van der Pol model is represented as a 2nd order oscillatory equation: 
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For the system with periodic solution, it is almost impossible to find an approximate solution with a large 
accuracy after many periods. For practical needs, it is enough to have two significant digits in the solution. 
The problem under consideration describes approximately 100 periods. An accuracy about 5% is achieved by 
setting error tolerance ep=1.e-6 for all solvers. 
 
At t=t_end=160, the solution with 3 significant digits is:       y(1)=1.878     y(2)=-0.7436; 
 
The following results were obtained in the examples (up to rounding errors): 
solution from dodesol_rkm9st :  y(1)=1.88041  y(2)=-0.74150;              
solution from dodesol_mk52lfn:     y(1)=1.87779  y(2)=-0.74325;              
solution from dodesol_mk52lfa:     y(1)=1.87779  y(2)=-0.74325;              
solution from dodesol_rkm9mkn:     y(1)=1.87788  y(2)=-0.74320;              
solution from dodesol_rkm9mka:     y(1)=1.87788  y(2)=-0.74320.              
 
All computations were performed with default values in the ipar array. 
 
Example F below implements the computations in Fortran, and Example C provides C code for the same 
computations.  
 

Example F 
!*******************************************************************************  
!                              INTEL CONFIDENTIAL  
!   Copyright(C) 2007-2008 Intel Corporation. All Rights Reserved.  
!   The source code contained  or  described herein and all documents related to  
!   the source code ("Material") are owned by Intel Corporation or its suppliers  
!   or licensors.  Title to the  Material remains with  Intel Corporation or its  
!   suppliers and licensors. The Material contains trade secrets and proprietary  
!   and  confidential  information of  Intel or its suppliers and licensors. The  
!   Material  is  protected  by  worldwide  copyright  and trade secret laws and  
!   treaty  provisions. No part of the Material may be used, copied, reproduced,  
!   modified, published, uploaded, posted, transmitted, distributed or disclosed  
!   in any way without Intel's prior express written permission.  
!   No license  under any  patent, copyright, trade secret or other intellectual  
!   property right is granted to or conferred upon you by disclosure or delivery  
!   of the Materials,  either expressly, by implication, inducement, estoppel or  
!   otherwise.  Any  license  under  such  intellectual property  rights must be  
!   express and approved by Intel in writing. 
!  
!******************************************************************************* 
!  This example gives the solution of initial value problem for the Van der  
!  Pol equation:  
! 
!        y”-1.d6*[(1-y*y)*y’+1.d6*y=0,  0<t<160,    y(0)=2,  y’(0)=0.  
!  
!******************************************************************************* 
 
      PROGRAM ODE_EXAMPLE_F 
 
      IMPLICIT NONE 
       
      INTEGER n, ierr, i 
! It is higly recommended to declare ipar array of size 128  
! for compatibility with future versions of ODE solvers 
      INTEGER kd(2), ipar(128) 
      DOUBLE PRECISION t, t_end, h, hm, ep, tr 
! As ODE system has size n=2, than the size of dpar array is equal to  
! max{13*n,(7+2*n)*n}=max{26,22}=26. More details on dpar array can be  
! found in the Manual 
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      DOUBLE PRECISION y(2), dpar(26) 
      EXTERNAL rhs_v_d_p, jacmat_v_d_p 
      REAL time_begin, time_end 
 
! global parameter settings suitable for all 6 dodesol routines   
! minimal step size for the methods 
         hm=1.d-12 
! relative tolerance. The code cannot guarantee the requested accuracy for ep<1.d-9 
         ep=1.d-6 
! absolute tolerance 
         tr=1.d-3 
 
c****************************** dodesol ******************************** 
! Please don't forget to initialize ipar array with zeros before the first call  
! to dodesol routines 
         DO i=1,128 
            ipar(i)=0 
         END DO   
          
         t=0.d0 
         h=1.d-7        
          
! setting size of the system n, end of integration interval t_end, and initial  
! value y at t=0 
         CALL example_v_d_p(n,t_end,y) 
 
         CALL CPU_TIME(time_begin) 
! universal solver 
         CALL dodesol(ipar,n,t,t_end,y,rhs_v_d_p,jacmat_v_d_p, 
     &                h,hm,ep,tr,dpar,kd,ierr) 
 
         CALL CPU_TIME(time_end) 
 
         IF(ierr.ne.0) THEN 
            PRINT*,'========================' 
            PRINT*,'DODESOL FORTRAN example FAILED' 
            PRINT*,'dodesol routine exited with error code',ierr   
            STOP 1 
         END IF 
    
         PRINT* 
         PRINT*, 'dodesol results' 
         PRINT* 
         PRINT*, 'ipar(2)=',ipar(2),'ipar(4)=',ipar(4) 
         PRINT*, 't=',t 
         PRINT*, 'Solution','  y1=',y(1),'  y2=',y(2) 
         PRINT*, '-----------------------------------------------------' 
         PRINT*, 'CPU time=',time_end-time_begin,' seconds' 
         PRINT*, '=====================================================' 
         PRINT* 
         IF(dabs(y(1)-1.878d0)+dabs(y(2)+0.7436d0).gt.1.d-2) THEN 
            PRINT*,'Solution seems to be inaccurate. Probably, ', 
     &                                               'example FAILED...' 
            STOP 1 
        END IF 
    
c****************************** dodesol_rkm9st ***************************** 
! Please don't forget to initialize ipar array with zeros before the first call  
! to dodesol routines 
         DO i=1,128 
            ipar(i)=0 
         END DO 
          
         t=0.d0 
         h=1.d-7 
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! setting size of the system n, end of integration interval t_end, and initial  
! value y at t=0 
         CALL example_v_d_p(n,t_end,y) 
 
         CALL CPU_TIME(time_begin) 
! explicit solver 
         CALL dodesol_rkm9st(ipar,n,t,t_end,y,rhs_v_d_p,h,hm,ep,tr, 
     &                       dpar,ierr) 
          
         CALL CPU_TIME(time_end) 
        
         IF(ierr.ne.0) THEN 
            PRINT*,'========================' 
            PRINT*,'DODESOL FORTRAN example FAILED' 
            PRINT*,'dodesol_rkm9st routine exited with error code',ierr 
            STOP 1 
         END IF 
    
         PRINT* 
         PRINT*, 'dodesol_rkm9st results' 
         PRINT* 
         PRINT*, 't=',t 
         PRINT*, 'Solution','  y1=',y(1),'  y2=',y(2) 
         PRINT*, '-----------------------------------------------------' 
         PRINT*, 'CPU time=',time_end-time_begin,' seconds' 
         PRINT*, '=====================================================' 
         PRINT* 
         IF(dabs(y(1)-1.878d0)+dabs(y(2)+0.7436d0).gt.1.d-2) THEN 
           PRINT*,'Solution seems to be inaccurate. Probably, ', 
     &                                               'example FAILED...' 
            STOP 1 
        END IF 
    
c****************************** dodesol_mk52lfn ******************************** 
! Please don't forget to initialize ipar array with zeros before the first call  
! to dodesol routines 
         DO i=1,128 
            ipar(i)=0 
         END DO 
          
         t=0.d0 
         h=1.d-7 
          
! setting size of the system n, end of integration interval t_end, and initial  
! value y at t=0 
         CALL example_v_d_p(n,t_end,y) 
 
         CALL CPU_TIME(time_begin) 
! implicit solver with automatic numerical Jacobi matrix computations 
         CALL dodesol_mk52lfn(ipar,n,t,t_end,y,rhs_v_d_p,h,hm,ep,tr, 
     &                        dpar,kd,ierr) 
          
         CALL CPU_TIME(time_end) 
          
         IF(ierr.ne.0) THEN 
            PRINT*,'========================' 
            PRINT*,'DODESOL FORTRAN example FAILED' 
            PRINT*,'dodesol_mk52lfn routine exited with error code',ierr 
            STOP 1 
         END IF 
    
         PRINT* 
         PRINT*, 'dodesol_mk52lfn results' 
         PRINT* 
         PRINT*, 't=',t 
         PRINT*, 'Solution','  y1=',y(1),'  y2=',y(2) 
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         PRINT*, '-----------------------------------------------------' 
         PRINT*, 'CPU time=',time_end-time_begin,' seconds' 
         PRINT*, '=====================================================' 
         PRINT* 
         IF(dabs(y(1)-1.878d0)+dabs(y(2)+0.7436d0).gt.1.d-2) THEN 
           PRINT*,'Solution seems to be inaccurate. Probably, ', 
     &                                               'example FAILED...' 
            STOP 1 
        END IF 
    
c****************************** dodesol_mk52lfa ******************************** 
! Please don't forget to initialize ipar array with zeros before the first call  
! to dodesol routines 
         DO i=1,128 
            ipar(i)=0 
         END DO 
          
         t=0.d0 
         h=1.d-7 
          
! setting size of the system n, end of integration interval t_end, and initial  
! value y at t=0 
         CALL example_v_d_p(n,t_end,y) 
 
         CALL CPU_TIME(time_begin) 
! implicit solver with user-defined Jacobi matrix computations 
         CALL dodesol_mk52lfa(ipar,n,t,t_end,y,rhs_v_d_p,jacmat_v_d_p, 
     &                        h,hm,ep,tr,dpar,kd,ierr) 
 
         CALL CPU_TIME(time_end) 
          
         IF(ierr.ne.0) THEN 
            PRINT*,'========================' 
            PRINT*,'DODESOL FORTRAN example FAILED' 
            PRINT*,'dodesol_mk52lfa routine exited with error code',ierr 
            STOP 1 
         END IF 
    
         PRINT* 
         PRINT*, 'dodesol_mk52lfa results' 
         PRINT* 
         PRINT*, 't=',t 
         PRINT*, 'Solution','  y1=',y(1),'  y2=',y(2) 
         PRINT*, '-----------------------------------------------------' 
         PRINT*, 'CPU time=',time_end-time_begin,' seconds' 
         PRINT*, '=====================================================' 
         PRINT* 
         IF(dabs(y(1)-1.878d0)+dabs(y(2)+0.7436d0).gt.1.d-2) THEN 
           PRINT*,'Solution seems to be inaccurate. Probably, ', 
     &                                               'example FAILED...' 
            STOP 1 
        END IF 
    
c****************************** dodesol_rkm9mkn ******************************** 
! Please don't forget to initialize ipar array with zeros before the first call  
! to dodesol routines 
         DO i=1,128 
            ipar(i)=0 
         END DO 
          
         t=0.d0 
         h=1.d-7 
          
! setting size of the system n, end of integration interval t_end, and initial  
! value y at t=0 
         CALL example_v_d_p(n,t_end,y) 
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         CALL CPU_TIME(time_begin) 
! hybrid solver with automatic numerical Jacobi matrix computations 
         CALL dodesol_rkm9mkn(ipar,n,t,t_end,y,rhs_v_d_p,h,hm,ep,tr, 
     &                        dpar,kd,ierr) 
          
         CALL CPU_TIME(time_end) 
         
         IF(ierr.ne.0) THEN 
            PRINT*,'========================' 
            PRINT*,'DODESOL FORTRAN example FAILED' 
            PRINT*,'dodesol_rkm9mkn routine exited with error code',ierr 
            STOP 1 
         END IF 
    
         PRINT* 
         PRINT*, 'dodesol_rmk9mkn results' 
         PRINT* 
         PRINT*, 't=',t 
         PRINT*, 'Solution','  y1=',y(1),'  y2=',y(2) 
         PRINT*, '-----------------------------------------------------' 
         PRINT*, 'CPU time=',time_end-time_begin,' seconds' 
         PRINT*, '=====================================================' 
         PRINT* 
         IF(dabs(y(1)-1.878d0)+dabs(y(2)+0.7436d0).gt.1.d-2) THEN 
           PRINT*,'Solution seems to be inaccurate. Probably, ', 
     &                                               'example FAILED...' 
            STOP 1 
        END IF 
    
c****************************** dodesol_rkm9mka ******************************** 
! Please don't forget to initialize ipar array with zeros before the first call  
! to dodesol routines 
         DO i=1,128 
            ipar(i)=0 
         END DO 
          
         t=0.d0 
         h=1.d-7 
          
! setting size of the system n, end of integration interval t_end, and initial  
! value y at t=0 
         CALL example_v_d_p(n,t_end,y) 
 
         CALL CPU_TIME(time_begin) 
! hybrid solver with user-defined Jacobi matrix computations 
         CALL dodesol_rkm9mka(ipar,n,t,t_end,y,rhs_v_d_p,jacmat_v_d_p, 
     &                        h,hm,ep,tr,dpar,kd,ierr) 
 
         CALL CPU_TIME(time_end) 
          
         IF(ierr.ne.0) THEN 
            PRINT*,'========================' 
            PRINT*,'DODESOL FORTRAN example FAILED' 
            PRINT*,'dodesol_rkm9mka routine exited with error code',ierr 
            STOP 1 
         END IF 
    
         PRINT* 
         PRINT*, 'dodesol_rkm9mka results' 
         PRINT* 
         PRINT*, 't=',t 
         PRINT*, 'Solution','  y1=',y(1),'  y2=',y(2) 
         PRINT*, '-----------------------------------------------------' 
         PRINT*, 'CPU time=',time_end-time_begin,' seconds' 
         PRINT*, '=====================================================' 
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         PRINT* 
          IF(dabs(y(1)-1.878d0)+dabs(y(2)+0.7436d0).gt.1.d-2) THEN 
           PRINT*,'Solution seems to be inaccurate. Probably, ', 
     &                                               'example FAILED...' 
            STOP 1 
        END IF         
        PRINT*, '========================' 
         PRINT*, 'DODESOL FORTRAN example successfully PASSED through', 
     &                                    ' all steps of computations' 
         PRINT* 
           
      STOP 0 
      END 
 
c********************** Example for Van der Pol equations **************   
      SUBROUTINE example_v_d_p(n,t_end,y) 
! The routine initializes the size of the system n, the end of  
! integration interval t_end, and inital data y at t=0.0  
      IMPLICIT NONE 
       
      INTEGER n 
      DOUBLE PRECISION t_end,y(*) 
             
         n=2  
         t_end=160.d0 
 
         y(1)=2.d0 
         y(2)=0.d0 
 
      RETURN 
      END 
 
c******************* Right hand side of Van der Pol equations ******************   
      SUBROUTINE rhs_v_d_p(n,t,y,f) 
 
      IMPLICIT NONE 
       
      INTEGER n 
      DOUBLE PRECISION t,y(*),f(*) 
  
         f(1)=y(2) 
         f(2)=1.d6*((1.d0-y(1)*y(1))*y(2)-y(1)) 
 
      RETURN 
      END 
 
c************* analytical Jacobi matrix for Van der Pol equations ************** 
      SUBROUTINE jacmat_v_d_p(n,t,y,a) 
       
      IMPLICIT NONE  
       
      INTEGER n 
      DOUBLE PRECISION t,y(*),a(n,*) 
       
         a(1,1)=0.d0 
         a(1,2)=1.d0 
         a(2,1)=-1.d6*(1.d0+2.d0*y(1)*y(2)) 
         a(2,2)= 1.d6*(1.d0-y(1)* y(1)) 
 
      RETURN 
      END 
 
C************************* End of Fortran code example ************************* 
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Example C 
/*******************************************************************************  
!                              INTEL CONFIDENTIAL  
!   Copyright(C) 2007-2008 Intel Corporation. All Rights Reserved.  
!   The source code contained  or  described herein and all documents related to  
!   the source code ("Material") are owned by Intel Corporation or its suppliers  
!   or licensors.  Title to the  Material remains with  Intel Corporation or its  
!   suppliers and licensors. The Material contains trade secrets and proprietary  
!   and  confidential  information of  Intel or its suppliers and licensors. The  
!   Material  is  protected  by  worldwide  copyright  and trade secret laws and  
!   treaty  provisions. No part of the Material may be used, copied, reproduced,  
!   modified, published, uploaded, posted, transmitted, distributed or disclosed  
!   in any way without Intel's prior express written permission.  
!   No license  under any  patent, copyright, trade secret or other intellectual  
!   property right is granted to or conferred upon you by disclosure or delivery  
!   of the Materials,  either expressly, by implication, inducement, estoppel or  
!   otherwise.  Any  license  under  such  intellectual property  rights must be  
!   express and approved by Intel in writing. 
!  
!****************************************************************************** 
!    
!  This example gives the solution of initial value problem for the Van der  
!  Pol equation:   
! 
!        y”-1.d6*[(1-y*y)*y’+1.d6*y=0,  0<t<160,    y(0)=2,  y’(0)=0.  
!  
!*******************************************************************************/ 
 
#include <stdio.h> 
#include <time.h> 
#include "math.h" 
#include "intel_ode.h" 
 
extern void example_v_d_p(int*,double*,double*); 
extern void rhs_v_d_p(int*,double*,double*,double*); 
extern void jacmat_v_d_p(int*,double*,double*,double*); 
 
int main(void) 
{ 
 
 int n, ierr, i; 
/* It is higly recommended to declare ipar array of size 128  
   for compatibility with future versions of ODE solvers */ 
 int kd[2], ipar[128]; 
 double t, t_end, h, hm, ep, tr; 
/* As ODE system has size n=2, than the size of dpar array is equal to  
   max{13*n,(7+2*n)*n}=max{26,22}=26. More details on dpar array can be  
   found in the Manual */ 
 double y[2], dpar[26]; 
 clock_t time_begin,time_end; 
 
/* global parameter settings suitable for all 6 dodesol routines */ 
 hm=1.e-12; /* minimal step size for the methods */ 
 ep=1.e-6;  /* relative tolerance. The code cannot guarantee  
      the requested accuracy for ep<1.d-9 */ 
 tr=1.e-3;  /* absolute tolerance */ 
 
/****************************** dodesol ********************************/ 
      
/* Please don't forget to initialize ipar array with zeros before the first  
call to dodesol routines */ 
 for (i=0;i<128;i++) ipar[i]=0;    
 
 t=0.e0; 
 h=1.e-7;         
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/* setting size of the system n, end of integration interval t_end, and  
initial value y at t=0 */ 
 example_v_d_p(&n,&t_end,y);      
 
 time_begin=clock(); 
/* universal solver */ 
 dodesol(ipar,&n,&t,&t_end,y,rhs_v_d_p,jacmat_v_d_p,&h,&hm,&ep,&tr,dpar,kd,&ierr);  
 time_end=clock(); 
 
 if(ierr!=0)  
 {  
  printf("\n========================\n"); 
  printf("DODESOL C example FAILED\n"); 
  printf("dodesol routine exited with error code %4d\n",ierr); 
  return -1; 
 } 
 
 printf("\ndodesol results\n\n"); 
 printf("ipar[1]=%4d, ipar[3]=%4d\n",ipar[1],ipar[3]); 
 printf("t=%5.1f\n",t); 
 printf("Solution      y1=%17.14f,   y2=%17.14f\n",y[0],y[1]); 
 printf("--------------------------------------------------------\n"); 
 printf("CPU time=%f seconds\n", ((double)(time_end-time_begin))/CLOCKS_PER_SEC);   
 printf("========================================================\n\n"); 
 if(fabs(y[0]-1.878e0)+fabs(y[1]+0.7436e0)>1.e-2) 
  printf("Solution seems to be inaccurate. Probably example FAILED\n"); 
 
/*************************** dodesol_rkm9st *****************************/ 
    
/* Please don't forget to initialize ipar array with zeros before the first  
call to dodesol routines */ 
 for (i=0;i<128;i++) ipar[i]=0;    
 
 t=0.e0; 
 h=1.e-7;         
 
/* setting size of the system n, end of integration interval t_end, and  
initial value y at t=0 */ 
 example_v_d_p(&n,&t_end,y);      
 
 time_begin=clock(); 
 /* explicit solver */ 
 dodesol_rkm9st(ipar,&n,&t,&t_end,y,rhs_v_d_p,&h,&hm,&ep,&tr,dpar,&ierr);  
 time_end=clock(); 
 
 if(ierr!=0)  
 {  
  printf("\n========================\n"); 
  printf("DODESOL C example FAILED\n"); 
  printf("dodesol_rkm9st routine exited with error code %4d\n",ierr); 
  return -1; 
 } 
 
 printf("\ndodesol_rkm9st results\n\n"); 
 printf("t=%5.1f\n",t); 
 printf("Solution      y1=%17.14f,   y2=%17.14f\n",y[0],y[1]); 
 printf("--------------------------------------------------------\n"); 
 printf("CPU time=%f seconds\n", ((double)(time_end-time_begin))/CLOCKS_PER_SEC);   
 printf("========================================================\n\n"); 
 if(fabs(y[0]-1.878e0)+fabs(y[1]+0.7436e0)>1.e-2) 
 { 
  printf("Solution seems to be inaccurate. Probably, example FAILED...\n"); 
  return -1; 
 } 
/*************************** dodesol_mk52lfn *****************************/ 
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/* Please don't forget to initialize ipar array with zeros before the first  
call to dodesol routines */ 
 for (i=0;i<128;i++) ipar[i]=0;      
 
 t=0.e0; 
 h=1.e-7;         
 
/* setting size of the system n, end of integration interval t_end, and  
initial value y at t=0 */ 
 example_v_d_p(&n,&t_end,y);      
 
 time_begin=clock(); 
/* implicit solver with automatic numerical Jacobi matrix computations */ 
 dodesol_mk52lfn(ipar,&n,&t,&t_end,y,rhs_v_d_p,&h,&hm,&ep,&tr,dpar,kd,&ierr);  
 time_end=clock(); 
 
 if(ierr!=0)  
 {  
  printf("\n========================\n"); 
  printf("DODESOL C example FAILED\n"); 
  printf("dodesol_mk52lfn routine exited with error code %4d\n",ierr); 
  return -1; 
 } 
 
 printf("\ndodesol_mk52lfn results\n\n"); 
 printf("t=%5.1f\n",t); 
 printf("Solution      y1=%17.14f,   y2=%17.14f\n",y[0],y[1]); 
 printf("--------------------------------------------------------\n"); 
 printf("CPU time=%f seconds\n", ((double)(time_end-time_begin))/CLOCKS_PER_SEC);   
 printf("========================================================\n\n"); 
 if(fabs(y[0]-1.878e0)+fabs(y[1]+0.7436e0)>1.e-2) 
 { 
  printf("Solution seems to be inaccurate. Probably, example FAILED...\n"); 
  return -1; 
 } 
/*************************** dodesol_mk52lfa *****************************/ 
      
/* Please don't forget to initialize ipar array with zeros before the first  
call to dodesol routines */ 
 for (i=0;i<128;i++) ipar[i]=0;    
 
 t=0.e0; 
 h=1.e-7;         
 
/* setting size of the system n, end of integration interval t_end, and  
initial value y at t=0 */ 
 example_v_d_p(&n,&t_end,y);      
 
 time_begin=clock(); 
/* implicit solver with user-defined Jacobi matrix computations */ 
 dodesol_mk52lfa(ipar,&n,&t,&t_end,y,rhs_v_d_p,jacmat_v_d_p,&h,&hm,&ep,&tr,dpar,kd,&
ierr);  
 time_end=clock(); 
 
 if(ierr!=0)  
 {  
  printf("\n========================\n"); 
  printf("DODESOL C example FAILED\n"); 
  printf("dodesol_mk52lfa routine exited with error code %4d\n",ierr); 
  return -1; 
 } 
 
 printf("\ndodesol_mk52lfa results\n\n"); 
 printf("t=%5.1f\n",t); 
 printf("Solution      y1=%17.14f,   y2=%17.14f\n",y[0],y[1]); 
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 printf("--------------------------------------------------------\n"); 
 printf("CPU time=%f seconds\n", ((double)(time_end-time_begin))/CLOCKS_PER_SEC);   
 printf("========================================================\n\n"); 
 if(fabs(y[0]-1.878e0)+fabs(y[1]+0.7436e0)>1.e-2) 
 { 
  printf("Solution seems to be inaccurate. Probably, example FAILED...\n"); 
  return -1; 
 } 
/*************************** dodesol_rkm9mkn *****************************/ 
        
/* Please don't forget to initialize ipar array with zeros before the first  
call to dodesol routines */ 
 for (i=0;i<128;i++) ipar[i]=0;      
 
 t=0.e0; 
 h=1.e-7;         
 
/* setting size of the system n, end of integration interval t_end, and  
initial value y at t=0 */ 
 example_v_d_p(&n,&t_end,y);      
 
 time_begin=clock(); 
/* hybrid solver with automatic numerical Jacobi matrix computations */ 
 dodesol_rkm9mkn(ipar,&n,&t,&t_end,y,rhs_v_d_p,&h,&hm,&ep,&tr,dpar,kd,&ierr);  
 time_end=clock(); 
 
 if(ierr!=0)  
 { 
  printf("\n========================\n"); 
  printf("DODESOL C example FAILED\n"); 
  printf("dodesol_rkm9mkn routine exited with error code %4d\n",ierr); 
  return -1; 
 } 
 
 printf("\ndodesol_rkm9mkn results\n\n"); 
 printf("t=%5.1f\n",t); 
 printf("Solution      y1=%17.14f,   y2=%17.14f\n",y[0],y[1]); 
 printf("--------------------------------------------------------\n"); 
 printf("CPU time=%f seconds\n", ((double)(time_end-time_begin))/CLOCKS_PER_SEC);   
 printf("========================================================\n\n"); 
 if(fabs(y[0]-1.878e0)+fabs(y[1]+0.7436e0)>1.e-2) 
 { 
  printf("Solution seems to be inaccurate. Probably, example FAILED...\n"); 
  return -1; 
 } 
/*************************** dodesol_rkm9mka *****************************/ 
      
/* Please don't forget to initialize ipar array with zeros before the first  
call to dodesol routines */ 
 for (i=0;i<128;i++) ipar[i]=0;    
 
 t=0.e0; 
 h=1.e-7;         
 
/* setting size of the system n, end of integration interval t_end, and initial  
value y at t=0 */ 
 example_v_d_p(&n,&t_end,y);      
 
 time_begin=clock(); 
/* hybrid solver with user-defined Jacobi matrix computations */ 
 dodesol_rkm9mka(ipar,&n,&t,&t_end,y,rhs_v_d_p,jacmat_v_d_p,&h,&hm,&ep,&tr,dpar,kd,&
ierr);  
 time_end=clock(); 
 
 if(ierr!=0)  
 { 
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  printf("\n========================\n"); 
  printf("DODESOL C example FAILED\n"); 
  printf("dodesol_rkm9mka routine exited with error code %4d\n",ierr); 
  return -1; 
 } 
 
 printf("\ndodesol_rkm9mka results\n\n"); 
 printf("t=%5.1f\n",t); 
 printf("Solution      y1=%17.14f,   y2=%17.14f\n",y[0],y[1]); 
 printf("--------------------------------------------------------\n"); 
 printf("CPU time=%f seconds\n", ((double)(time_end-time_begin))/CLOCKS_PER_SEC);   
 printf("========================================================\n\n"); 
 if(fabs(y[0]-1.878e0)+fabs(y[1]+0.7436e0)>1.e-2) 
 { 
  printf("Solution seems to be inaccurate. Probably, example FAILED...\n"); 
  return -1; 
 } 
 printf("\n========================\n"); 
 printf("DODESOL C example successfully PASSED through all steps of 
computations\n"); 
 return 0; 
} 
 
/*************** Data for Van der Pol equations ****************/   
void example_v_d_p(int*n,double*t_end,double*y) 
/* The routine initializes the size of the system n, the end of  
integration interval t_end, and inital data y at t=0.0 */ 
{       
 *n=2; 
 *t_end=160.e0; 
 
 y[0]=2.e0; 
 y[1]=0.e0; 
}        
 
/************* Right hand side of Van der Pol equations ***********/ 
void rhs_v_d_p(int*n,double*t,double*y,double*f) 
{ 
 double c; 
 
 c=1.e0-y[0]*y[0]; 
 
 f[0]=y[1]; 
 f[1]=(c*y[1]-y[0])*1.0e6; 
} 
 
/******* analytical Jacobi matrix for Van der Pol equations *******/  
void jacmat_v_d_p(int*n,double*t,double*y,double*a) 
{ 
/* Please make sure that Jacobi matrix is stored in column-wise order:  
a[j*n+i]=df(i)/dx(j) */ 
 a[0]=0.e0; 
 a[1]=-1.e6*(1.e0+2.e0*y[0]*y[1]); 
 a[2]=1.e0; 
 a[3]=1.e6*(1.e0-y[0]*y[0]); 
} 
/********************* End of C code example **********************/ 
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