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1. Introduction

LightPipes for Mathcad is a set of functions written in C available to Mathcad. It is designed
to model coherent optical devices when the diffraction is essential. The toolbox consists of a
number of functions. Each function represents an optical element or a step in the light
propagation. There are apertures, intensity filters, beam-splitters, lenses and models of free
space diffraction in LightPipes. There are also more advanced tools for manipulating the
phase and amplitude of the light. The program operates on a large data structure, containing
square two-dimensional arrays of complex amplitudes of the optical field of the propagating
light beam.
The LightPipes for Mathcad routines are modifications of the LightPipes C routines written
by Gleb Vdovin for Unix, Linux, DOS and OS2 workstations or PC. The Mathcad version of
LightPipes has a number of advantages:
1. Enhanced readability of the document with text added to the commands.
2. The graphics-, animation- and other features of Mathcad can be combined with the
LightPipes commands.
3. You can use variable arguments in the function calls and handle complex data structures
in a very simple way.
4. Enhanced flexibility and fast execution.
Most of the commands of LightPipes for Mathcad are the same as the Unix/DOS version.
Only the commands handling the in- and output of the results to disk and the plot commands
have been skipped as one can use the build-in commands of Mathcad for disk
communications and graphics with more advantage. The names of the commands are
proceeded with the letters “LP” in order to keep the commands together in the Mathcad’s
function list and to prevent the confusion with existing Mathcad functions. The arguments are
tested during execution of the command and error messages appear in the case of bad
arguments. (Mathcad’s “red” error boxes).
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2. Warranty

There is no warranty for the program, to the extent permitted by applicable law. Except
when otherwise stated in writing the copyright holders and/or other parties provide the
program “as is” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as the quality and performance of the program is with you.
Should the program prove defective, you assume the cost of all necessary servicing,
repair or correction.
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3. Availability

The LightPipes for Mathcad package for beam propagation is copyright ©(1993--1996) of
Gleb Vdovin and ©(1998) of Fred van Goor. This document (also © of Gleb Vdovin and Fred
van Goor) may be freely distributed together with the demo executables. No part of this
document can be reproduced without written permission of the authors. A demo version of
LightPipes for Mathcad with a limited functionality of 64x64 grid dimension and this manual
are freely available from WWW: http://www.okotech.com

LightPipes for Mathcad with unlimited grid dimension (limited by your computer memory) is
available from:

Flexible Optical B.V.
Rontgenweg 1,

2624 BD Delft

The Netherlands

Phone: +31-15-2851547
Fax: +31-51-2851548
e-mail: oko@xs4all.nl

web site: www.okotech.com

Additional information and more examples can be found on:
http://edu.tnw.utwente.nl/inlopt/lpmcad
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4. Installation of LightPipes for Mathcad

4.1 System requirements.
LightPipes for Mathcad must be installed on a system with the following hardware and
software:

Hardware:

1. An 80386-, 80486 or Pentium based IBM or compatible computer.
2. At least 4 megabytes of memory.
3. A hard disk with at least 2 megabytes of free space.
Because the calculations require large arrays of data we recommend 16 megabytes of memory
and a fast processor like a 66MHz 486 or a 100MHz Pentium or better.

Software:

—_

Microsoft Windows.
2. Mathcad PLUS 6.0 or higher. (www.mathsoft.com)

The authors tested LightPipes for Mathcad with Mathcad PLUS 5.0. All the routines work with
this version. However, the help and the example programs, installed on your hard disk, have been
written for the 6.0 version and higher and do not work under Mathcad PLUS 5.0. You have to type
over the examples in the manual your self. Of course, the examples using specific features of
version 6.0 and higher (Bitmaps, programming, some graphics, etc.) cannot be written in Mathcad
PLUS 5.0 and have to be modified.






4-13

4.2 Installation

Mathcad versions older than Mathcad 2000 Professional:

LightPipes for Mathcad can be installed on your system by copying the self extracting file
LPxx.EXE (for version x.x), the setup.bat batch file and the readme.txt file to a temporal
directory on your hard disk or to floppy disk. You should read the file readme.txt because this
file contains recent information which is not in the manual. Then open a DOS window and
type ‘setup’ or double click on this file name in a file manager like Windows Explorer. You
can also use the Start/Run facility of Windows’95. ‘Setup’ creates a temporary directory,
‘Iptemp’, on your hard disk and copies LPxx.EXE to this directory. Then it unpacks
LPxx.EXE and starts the installation. The installation program will ask you for the directory
where Mathcad was installed (default: ‘c:\winmcad’) and copies the DLL file containing the
LightPipes functions to your °....\winmcad\userefi’ directory. It also copies help-files and
some examples to two new created directories: ‘....\winmcad\lphelp’ and
‘...\winmcad\lpexamp’ respectively, in your Mathcad directory. Finally ‘Setup’ deletes the
temporary directory ‘Iptemp’. The LightPipes for Mathcad functions are available to you the
next time you start Mathcad and should now be listed under the Math/Choose Function
command of Mathcad. We advise you to start the help program:
‘.....\winmcad\lphelp\lphelp.mcd’ first. This program introduces you to the commands.
Double-click on the bold, underlined words to jump to commands and examples. You can
remove LightPipes for Mathcad from your hard disk by deleting the Iphelp and Ipexamp
directories together with their contents, as well as the file LPMcad.dll in the
‘...\winmcad\userefi’ directory. Note that LightPipes for Mathcad works only with the PLUS
or Professional versions of Mathcad.

Mathcad 2000 Professional and higher:

For Mathcad 2000 Professional and higher we have made new installers for each Mathcad
version. They can be found on the installation CD ROM or obtained from Flexible Optical by
download. The installer will copy LightPipes for Mathcad to your Mathcad directory, usually
‘c:\Program Files\Mathsoft’. It will add ‘LPMcad.xml’ or ‘LPMcad_EN.xml’ to the
‘...\doc\funcdoc’ directory, ‘LightPipes for Mathcad Manual.pdf’ to ‘....\doc’, the
‘LPMcad.dIl’ to ‘....\userefi’ and it will install a new Handbook with help for LightPipes in
the ‘....\Handbook’ directory. Now Help will be available when you insert a LightPipes
function or when you open the LightPipes for Mathcad Handbook with help for each
command and some examples.

Mathcad 2001:

Mathcad version 2001 can not be used with LightPipes for Mathcad because this version has
bugs and will generate errors when dealing with large arrays in a user dll as is the case with
LightPipes for Mathcad. Mathsoft solved this by releasing a new version soon after version
2001 called Mathcad 2001i (I = improved?!). LightPipes for Mathcad works without
problems with version 2001i.

Mathcad 12 and higher.

From version 12 Mathcad is not 100% compatible with older Mathcad versions and the
LightPipes dll had to be rewritten. Also one must make the arguments of the functions
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dimensionless. This can be done by dividing by the unit (the meter in most cases). Another
elegant method is to redefine the meter in a LightPipes for Mathcad document: type: m=1 in
your document and redefine nm = 10 m, um = 10 m, etc. You can put a hidden area in each
LightPipes for Mathcad document with this as shown in the examples.
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5. LightPipes for Mathcad description

5.1 First steps

5.1.1 Help

Help can be obtained by clicking on the Math/Choose Function of Mathcad. A list of all the
Mathcad functions and the LightPipes for Mathcad commands (Beginning with the letters
‘LP’) with a short description will appear.

Choose Function m

Function name is... Returns...

LPConvert(Field ~| |Lightpipes1.1: propagates -]
LPForvardiz, Field the field a distance z using
LPForward(z.(new)size.(ne FFT.

LPFresnelfz.Fjeld hd

K o =

Insert Cancel |

Figure 1 The Math/Choose Function command of Mathcad shows a shott description of the
function.

You can also obtain help by running the help program: ‘Iphelp.mcd’ in the
...\winmcad\Iphelp’ directory. Double-click on the bold, underlined words to jump to the
commands and examples. If an argument of a function cannot be accepted by the routine a
“red-box” error message appears giving information about the error. In version Mathcad 8 and
2000 Professional the “red-box” has been removed. Now the command causing the error will
be colored red. If you installed LightPipes for Mathcad 2000 or higher you can obtain help
by opening the LightPipes for Mathcad Handbook. Choose Help, Handbooks, LightPipes for
Mathcad Help to open this book. The insertion of functions has been organized in a different
way: Choose Insert, Function (Ctrl+E) and go to the LightPipes for Mathcad category. A short
help will be given about the LightPipes command selected.

5.1.2 Starting the calculations

All the calculations must start with the LPBegin function. This function defines the size of the
square grid, the grid dimension and the wave length of the field. It is very convenient to use
units. The arguments must be dimensionless, however. This can be done by dividing the
variables by their units. When you use Mathcad 8 or higher (up to version 11) it is not
necessary to past dimensionless arguments to the LightPipes functions anymore. Just type the
arguments without dividing them through the units! You can still do that however, without
altering the results. This has been done in order to be compatible with documents made with
older versions. For Mathcad versions 12 and 13, however, Mathsoft decided to delete this
option (!?) and you have to make the arguments dimensionless. A work around to this is to
make your own units of length by redefinition of the meter: simply define the meter 1: type
m=1, nm=10"-9m, etc at the top of your document. In the help handbook you find a (closed)
area (see Mathcad help how to manage areas) with this in each help topic and example.
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2 Mathcad PLUS - [Untitled:1]

@Eile Edit Text Math Graphics Symbolic Window Books Help _|E|i|

mnslffl_g-m j

Grid3ize = 30-mm

GridDimension= 124

A =500 nm

GridSize A
i ,— . GndDimension
m m

Field = LPBegin

| auta [MNUM [Page1 4

Figure 2 The use of LPBegin to define a uniform field with intensity 1 and phase 0.

A two dimensional array will be defined containing the complex numbers with the real and
imaginary parts equal to one and zero respectively. The minimal dimension of the grid must
be 8x8 and the maximum will be determined by your computer memory (or 64x64 if you have
the demo version of LightPipes for Mathcad). The grid dimension must be an even number.
An extra row is added to the field array to carry information such as the grid dimension, grid
size and wave length with the field.
5.1.3 The dimensions of structures
The field structures in LightPipes for Mathcad are two dimensional arrays of complex
numbers. For example a grid with 256x256 points asks about 1Mb of memory. 512x512
points ask more then 4Mb and 1024x1024 16Mb. Some commands, however need more
memory because internal arrays are necessary. LightPipes for Mathcad works fast and without
disk-swapping with arrays up to 256x256 points for a Pentium PC with 32Mb RAM memory
and running under Windows’95. A function called ‘Time.dll’ is available from the author to
measure the execution time of the programs.
5.1.4 Apertures and screens

The simplest component to model is an aperture. There are three different types of apertures:

1. The circular aperture: LPCirc Aperture(R, xs, ys, Field)

2. The rectangular aperture: LPRectAperture(wy, wy, X, ys, @, Field)

3. The Gaussian diaphragm: LPGaussAperture(R, X, ys, T, Field)

Where R=radius, x; and y; are the shift in x and y direction respectively, @ is a rotation and T
is the centre transmission of the Gaussian aperture. In addition, there are three commands
describing screens: LPCircScreen (inversion of the circular aperture), LPRectScreen,
(inversion of the rectangular aperture) and LPGaussScreen (inversion of the gauss aperture).
Figure 3 shows an example of the usage of a circular aperture. All kinds of combinations of

circular, rectangular and Gaussian apertures and screens can be made as illustrated in Figure
4.
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Window Help

Definition of a Field with LPBeqin:
R=2.5mm Radius

ze=lmm  shiftinwdirection

=1
Vs T it in y-direction

Intensity := LFIntensity (2 Field)

size = 10 mm
N=128

A =500-nm

ET|
Press F1 for help.

Field := LFBegin (— —

Field :

Calculation of the Intensity of the beam with LPIntensity and plot {Graphics, Create Picture):

size A

|

R %5 ¥
= LPCircApernire (_ = Field)

m m m

m m

If the arguments of the commands are not
dimensionless an error message will appear.

R ¥
F = LPCircAperture| — | x s,—s,Pield|
m m

Can't hawe anything with units
or dimensions here

3

MUK | Page 1

[ Auto A

Figure 3 Example of the application of a circular aperture. Demonstration of an error message.

In Figure 3 and Figure 4 the field (called ‘Field’) was defined with the LPBegin command
with a uniform intensity and phase distribution, a wavelength, a grid size and a grid
dimension. In Figure 3 we applied units to the variables. The variables in the commands must
be made dimensionless, however, which has been done by dividing them by their units. If this
is not done, an error message appears as shown in Figure 3.

= Mathcad Professional - [man0002_mcd]
ﬁElle Edit “iew Insert Format Math

Symhbolics

Window  Help

EIET

Field = LPBegm(o.m , 10'6,256)

Field = LPCircSereen(0.0007,0.001,0.0015 , Field)

Field = LPRectScreen(0.001,0.0035 - 0,002, 0.0025, 30, Field)

el |
Fress F1 for help.

Field = LPRectSerzen(0.001,0.001,-0.0015 ,-.002, 0, Field) j

Field := LPGaussdperture(0.004 0,0, 1 Field)

Al

Intensity := LPIntensity( 2 Field)

Auta NUM | Pagel1 2

Figure 4 The use of screens and apertures.

The use of units in the simulations is recommended because it is very convenient and it

reduces the chance on errors.
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5.1.5 Graphing and visualisation.

In Figure 3 and Figure 4 the intensity of the field is calculated after aperturing ‘Field’ with the
LPIntensity command using option 2, .which means that a bitmap with gray values is
produced which can be displayed with the ‘Create Picture’ command of Mathcad. This is the
fastest way to display the results of the LightPipes calculations. All the other powerful
graphic features of Mathcad can be applied for displaying the intensity or phase distributions
including coloured contour plots, surface plots, etc., but these are rather time consuming.
With the command LPInterpolate, however, you can reduce the grid dimension of the field
speeding up subsequent plotting considerably. This is illustrated in Figure 5. The use of
interpolation will be explained in more detail in paragraph 5.2.6. The results of the
calculations can be written to file using Mathcad’s WRITE or WRITEPRN commands. You
can also type the numerical data on your screen, select them and copy them to the clip board.
This is a very convenient method to import your data into your favourite graphics program or
what ever you want to do with it. See your Mathcad user’s guide or the help facility for
details. In Figure 5 we also plotted the cross section of the beam in a two dimensional XY
plot. For this we have to define an integer, i, ranging from O to the grid dimension minus one.
This integer must be used to define the element of the (square) array, I, which is used for the
vertical axis of the XY plot. You can also use it to define a vector x for the horizontal axis.
You can hide the array elements and define your own text along the axis to produce a nicer
plot. These things are explained in the Mathcad user’s guide.

“* Mathcad Professional - [man0003 MCD]
A8 File Edit Wiew Inset Format Math  Symbolics  Window Help —&1x|
+ pm=10"Cm :1
size= 10 -mm R=25mm % =0-mm ¥ g=0-mm T=80% N=128 h=1-pm
. X, 7
Field :=1FBegin ﬁ,f,N Field ;=1 FGaussAperture BT 0 et
m m m m o i
Fieid = LFinterpel| “2, Y 0,0,0,1, Fietd
m 4
N .
i I :=LPIntensity(0, Field)
. 4| size
i=0._--1 o= i —
4 £ 20 (N
4
L
IN
PR —
i
2
| |
0 ] 1} 3
X
1
hin
I
KN} _'l_I
Frazs F1 far helg. | Auta MUM [ Page1

Figure 5 The use of XY-plots and surface plots to present your simulation results. Note the usage of
LPInterpol to reduce the grid dimension for a faster and nicer surface plot.
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5.2 Free space propagation

There are five different possibilities for modelling the light propagation in LightPipes for
Mathcad.

5.2.1 FFT propagation (spectral method).

Let us consider the wave function U in two planes: U(x,y,0) and U(X,y,z) . Suppose then that
U(x,y,z) is the result of propagation of U(x,y,0) to the distance z , with the Fourier transforms
of these two (initial and propagated ) wave functions given by A(a,b,0) and A(a,b,z)
correspondingly. In the Fresnel approximation, the Fourier transform of the diffracted wave
function is related to the Fourier transform of the initial function via the frequency transfer
characteristic of the free space H( a,b,z) , given by [1,2]:

A(Ot,,B,z) . 2 2\ %
H =" — expieike(1- o - B2)” .
A@.0) exp{ tkz(l—a”— ) } (5.1)
where:
A(@, 8.0) = [ [U(x, y.0)expf- ik(ax + fy) ixdy (5.2)
Ale. B.2)= [ [UCx. v 2)exp{-ik(a+ By} dx dy (5.3)

Expressions (5.1, 5.2, 5.3) provide a symmetrical relation between the initial and diffracted
wave functions in the Fresnel approximation. Applied in the order = (5.1) = (5.3) they result in
the diffracted wave function, while being applied in the reversed order they allow for
reconstruction of the initial wave function from the result of diffraction. We shall denote the
forward and the reversed propagation operations defined by expressions (5.1, 5.2 and 5.3) with
operators L" and L respectively.

The described algorithm can be implemented numerically using Fast Fourier Transform (FFT)
[2, 3] on a finite rectangular grid with periodic border conditions. It results in a model of beam
propagation inside a rectangular wave guide with reflective walls. To approximate a free-space
propagation, wide empty guard bands have to be formed around the wave function defined on a
grid. To eliminate the influence of the finite rectangular data window, Gaussian amplitude
windowing in the frequency domain should be applied—see [2, 3] for extensive analysis of these
computational aspects.

The simplest and fastest LightPipes command for propagation is LPForvard. (The ‘v’ is a type
error made on purpose!) It implements the spectral method described by (5.1, 5.2, 5.3). The syntax
is simple, for example if you want to filter your field through a 1cm aperture and then propagate
the beam 1m forward, you type the commands listed in Figure 6:
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¥ Mathcad Professional - [man0004.MCD]
#% File Edit View Insen Format Math  Symbolics Window Help =181 x|
Propagation of a field after filtering through a 1cm aperture +
Field = LPBeg;m(U 02, ]0_6 ) 256) Field = LPCrcAperture{0.005,0, 0 Field)
Field := LPForvard(1,Field)
1:=0.255
I := LPIntensity{ 2, Field)
300 T T
200 — =
Y2z
100 — =
0 |
1] 100 200
i
Press F1 far help Auto NUM | Page1 2

Figure 6 The result of the propagation: density and cross section intensity plots.

We see the diffraction effects, the intensity distribution is not uniform anymore. The algorithm
is very fast in comparison with direct calculation of diffraction integrals. Features to be taken into
account:

¢ The algorithm realises a model of light beam propagation inside a square wave guide with
reflecting walls positioned at the grid edges. To approximate a free space propagation, the
intensity near the walls must be negligible small. Thus the grid edges must be far enough
from the propagating beam. Neglecting these conditions will cause interference of the
propagating beam with waves reflected from the wave guide walls.

e As a consequence of the previous feature, we must be extremely careful propagating the
plane wave to a distance comparable with DA where D is the diameter (or a characteristic
size) of the beam, and A is the wavelength. To propagate the beam to the far field (or just far
enough) we have to choose the size of our grid much larger than the beam itself, in other
words we define the field in a grid filled mainly with zeros. The grid must be even larger
when the beam is aberrated because the divergent beams reach the region border sooner.
Due to these two reasons the commands:

Field:=LPBegin(0.02,10°,256)
Field:=LPRectAperture(0.02,0.02,0,0,0,Field)
Field:=LPForvard(1,Field)
I:=LPIntensity(2,Field)

make no sense (zero intensity). The cross section of the beam (argument of
LPRectAperture) equals to the section of the grid (the first argument of LPBegin), so we
have a model of light propagation in a wave guide but not in a free space. One has to put:

Field:=LPBegin(0.04,10'6,256)
Field:=LPRectAperture(0.02,0.02,0,0,0,Field)
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Field:=LPForvard(1,Field)
I:=LPIntensity(2,Field)

for propagation in the near field, and may be:

Field:=LPBegin(0.2,10°,512)
Field:=LLPRectAperture(0.02,0.02,0,0,0,Field)
Field:=LPForvard(400,Field)
I:=LPIntensity(2,Field)

for far field propagation.
If we compare the result of the previous example with the result of:

Field:=LPBegin(0.06, 10°5 12)
Field:=LPRectAperture(0.02,0.02,0,0,0,Field)
Field:=LPForvard(400,Field)
[:=LPIntensity(2,Field)

we’ll see the difference.

We have discussed briefly the drawbacks of the FFT algorithm. The good thing is that it is very
fast, works pretty well if properly used, is simple in implementation and does not require the
allocation of extra memory. In LightPipes.1.1 and later a negative argument may be supplied to
LPForvard. It means that the program will perform “propagation back” or in other words it will
reconstruct the initial field from the one diffracted. For example:

* Mathcad Professional - [man0005 MCD]
#% File Edit “iew Incett Format Math Symbolics Window Help ==

“Field = LPBegin{0.1,10°% 256) :1

Field = LPCircAperture{0.025,0, 0, Field) Tiitial = LPIntensity (2, Field)

Field := LPForvard( 30, Field) I sifacted = LPIntensity (2, Field)
Field := LFFervard(- 30, Field) I econstructed = LPIntensity (2, Field)
Tnitial field ( Tinri) ) Propagated to the near field Propagated back

( Idlﬁracted {Trecanstructed )

Press F1 for help Auto NUM | Page1 2

Figure 7 The initial filed, the field propagated to the near field and the field propagated back (from left
to right)
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5.2.2 Direct integration as a convolution: FFT approach

Another possibility of a fast computer implementation of the operator L" is free from many of
the drawbacks of the described spectral algorithm. The operator L™ may be numerically
implemented with direct summation of the Fresnel-Kirchoff diffraction integral:

k | ’ — N ’
UG =5l U(x,y,O)exp{ik(x o }dxdy (5.4)

with functions U(x,y,0) and U(x,y,z) defined on rectangular grids. This integral may be
converted into a convolution form which can be efficiently computed using FFT [4,5]. This
method is free from many drawbacks of the spectral method given by the sequence

(5.3)>(5.2)>(5.4) although it is still very fast due to its use of FFT for computing of the integral
sums.

We'll explain this using a two-dimensional example, following [4], p.100. Let the integral be
defined in a finite interval —-L/2...L/2:

X LI2 _(x—x1)2
Ux,2) =7 = [ Ux0)exp ik (5.5)
-L/2

Replacing the functions U(x) and U(x;) with step functions U; and U, defined in the sampling
points of the grid with j=0...N, and m=0...N we convert the integral (5.5) to the form:

B k N-1 ~’C_,'+0‘5 . (Xm —.X')z
U, _1/2_71'1‘1{;[]"-[&[-0-56@{% —2Z dx+

X0.5 . (Xm - X)2 Xy . (Xm - X)2
+U, Ll exp{lk YR dx+U, J.XN_O‘Sexp ik YR dx
(5.6)
Taking the integrals in (5.6) we obtain:

N-1
v, = ZUijj +UK,  +UyK,y 5.7
=l

where: K9, K,; and K,y are analytical expressed with the help of Fresnel integrals, depending

only onto the difference of indices. The summations ZIJ_V: UK, caneasily be calculated for all

indices m as one convolution with the help of FFT.

The command LPFresnel, defined starting from version LightPipes.1.1, implements this
algorithm using the trapezoidal rule. It is almost as fast as LPForvard (from 2 to 5 times slower), it
uses 8 times more memory than LPForvard and it allows for “more honest” calculation of near and
far-field diffraction. As it does not require any protection bands at the edges of the region, the
model may be built in a smaller grid, therefore the resources consumed and time of execution are
comparable or even better than that of LPForvard. LPFresnel does not accept a negative
propagation distance. When possible LPFresnel has to be used as the main computational engine
within LightPipes for Mathcad.

Warning: LPFresnel does not produce valid results if the distance of propagation is
comparable with (or less than) the characteristic size of the aperture at which the field is diffracted.
In this case LPForvard or LPSteps should be used.
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5.2.3 Direct integration

Direct calculation of the Fresnel-Kirchoff integrals is very inefficient in two-dimensional grids.
The number of operations is proportional to N* , where N is the grid sampling. With direct
integration we do not have any reflection at the grid boundary, so the size of the grid can just match
the cross section of field distribution. LightPipes include a program LPForward realising direct
integration. LPForward has the following features:

e arbitrary sampling and size of square grid at the input plane

e arbitrary sampling and size of square grid at the output plane, it means we can propagate the
field from a grid containing for example 52x52 points corresponding to 4.9x4.9cm to a grid
containing 42x42 points and corresponding let’s say 8.75x8.75 cm.

5.2.4 Finite difference method.
It can be shown that the propagation of the field U in a medium with complex refractive
coefficient A, is described by the differential equation:

&2U+&+2'kd—U+A( YU =0 (5.8)
8 x2 8 y2 l d z X,Y,% - .
To solve this equation, we re-write it as a system of finite difference equations:
k+1 k+1 k+1 k k k k+1 k
Uiﬁ,j B 2Ui,j + Ui—t,j " Ui,j+1 _2Ui,j +Ui,j—1 12k Ui,j _2Ui,j " Ai]f;lU,-}f;l -0 (5.9)

sz Ay2

Collecting terms we obtain the standard three-diagonal system of linear equations, the solution

of which describes the complex amplitude of the light field in the layer z+ Az as a function of the
field defined in the layer z:

—a U +cUM -bUMN = f (5.10)

i~ i-1,j ii,j i+lj —

where (we put Ax=Ay=A)

1
a. =b, =- (5.11)
2 2ik
=AM - = 5.12
YN Az ©-12)
ik Ut -20+Uf
= Ul ——L= O 1 (5.13)

The three-diagonal system of linear equations (5.10) is solved by the standard elimination
(double sweep) method, described for example in [ 6 ]. This scheme is absolutely stable (this
variant is explicit with respect to the index i and implicit with respect to the index j). One step of
propagation is divided into two sub-steps: the first sub-step applies the described procedure to all
rows of the matrix, the second sub-step changes the direction of elimination and the procedure is
applied to all columns of the matrix.

The main advantage of this approach is the possibility to take into account uniformly
diffraction, absorption (amplification) and refraction. For example, the model of a waveguide with
complex three-dimensional distribution of refraction index and absorption coefficient (both are
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defined as real and imaginary components of the (three-dimensional in general) matrix Al.’f ; )can

be built easily.

It works also much faster than all described previously algorithms on one step of propagation,
though to obtain a good result at a considerable distance, many steps should be done. As the
scheme is absolutely stable (at least for free-space propagation), there is no stability limitation on
the step size in the direction Z. Large steps cause high-frequency errors, therefore the number of
steps should be determined by trial (increase the number of steps in a probe model till the result
stabilizes), especially for strong variations of refraction and absorption inside the propagation path.

Zero amplitude boundary conditions are commonly used for the described system. This, again,
creates the problem of the wave reflection at the grid boundary. The influence of these reflections
in many cases can be reduced by introducing an additional absorbing layer in the proximity of the
boundary, with the absorption smoothly (to reduce the reflection at the absorption gradient)
increasing towards the boundary.

In LightPipes for Mathcad version 1.2 the refraction term is not included into the propagation
formulas, instead the phase of the field is modified at each step according to the distribution of the
refractive coefficient. This "zero-order" approximation happened to be much more stable
numerically than the direct inclusion of refraction terms into propagation formulas. It does not take
into account the change of the wavelength in the medium, it does not model backscattering and
reflections back on interfaces between different media. Perhaps there are other details to be
mentioned. The described algorithm is implemented in a filter LPSteps.
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In this exarmple of LightPipes for Mathcad, version 1.2, we demonstrate the use of the LPSteps
carmmand to calculate the intensity distribution in the focus of a positive lens.

Definition of the grid;  size=4-mm W=632.3 nm =100
Definition of the refractive index: i=0.H-1 ji=0.H-1 B =1
[ = |KeLPBegin| %2 My Define the initial field
m m
Ko LPCircaperture|—,0,0, K Transmission through an aperture
m
f
Ko LPlens|—,0,0 K and a lens
m
for kel K ..
Ke LPSteps(E,N steps T K) Propagation of the field through the medium with
m index, n using a distance, Nsteps™dz.
Int— LPIntensity( 0, k) Calculation of the intensity
L—Int and storage
I

KT _'I_I
| autar MUM | Page 1 /ﬁl

Figure 8. The use of LPSteps to calculate the intensity distribution in the focus of a lens.
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Figure 8. The use of LPSteps to calculate the intensity distribution in the focus of a lens. (cont.)

LPSteps has a built-in absorption layer along the grid boundaries (to prevent reflections),
occupying 10% of grid from each side. LPSteps is the only filter in LightPipes for Mathcad
allowing for modeling of (three-dimensional) waveguide devices.

Like LPForvard, LPSteps can inversely propagate the field, for example the sequence
...LPSteps( 0.1, 1, n, Field) LPSteps(-0.1, 1, n ,Field)... doesn't change anything in the field
distribution. The author has tested this reversibility also for propagation in absorptive/refractive
media, examples will follow.

LPSteps implements scalar approximation, it is not applicable for modeling of waveguide
devices in the vector approximation, where two components of the field should be taken into
account.

5.2.5 Splitting and mixing beams

There are two commands in LightPipes which are useful for modelling of interferometers.
With LPIntAttenuator we can split the field structure (amplitude division) - The two obtained fields
could be processed separately and then mixed again with the routine LPBeamMix. In this script we
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have formed two beams each containing one ““shifted’” hole. After mixing these two beams we
have a screen with two holes: a Young’s interferometer.

E Mathcad PLUS - [man0007]

@ File Edit Text Math Graphics Symbolic Window Books Help - IE il

Interferometer consisting of two holes 1 A

fm= -m
Definition of a uniform field: F :=LPBegin(ﬁ,ﬁ,N)
m i
Aperturing the field by two holes with radii R, separated a distance 2%
Fy :LPCi:cApmme(E,ﬁ,O,F) Fq :LPCi:cApmuxe(E,i,U,F)
m m BLO il
+

Mixing the two beams: F :LPEeamMix(F 1’F2)

Plotting the intensity distribution in the plane of the screen Iy .:LPInLensity(2,F)

Propagating a distance 2 F :=LPFresnel(£,F) I :=LPInr.ensity(2,F)

1
size=3 mm M=128 h=550 nm

R=0.12 mm x=0.5 mm z=75 om

Plane of the screen Fringes at a distance z from the screen

1| o

| [auto ] | Page1

Figure 9 Young’s interferometer.

Having the model of the interferometer we can “play” with it, moving the pinholes and
changing their sizes. The following models the result of the interference of a plane wave diffracted
at three round apertures:
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Model of a screen with three holes 10 i‘
Definition of a uniform field: F .:LPEegin(ﬁ,ﬁ,N)
m m

Aperturing the field by the three holes with radii R:

F =LPCircAperiure E,j,-z,F F 5 =LPCitcAperture E,i,-z,F F 5 i=LPCircAperture E,U,X,F
momoom momoom moom
Mixing the three beams: F :LPEeamMix(LPBea:rMix(F +.F EJ’F 3)

Flotting the intensity distribution in the plane of the screen: Iy .:LPIntensity(2,F)

Fropagating a distance z F :=LPFresne1(i,F) Iy :=LPIntens1ty(2,F)

size =3 mm M=128 #=550-tum
R=0.12-mm

=025 mm x=0.5 mm z=75cm

Plane of the screen Intensity distribution a distance z from 4

the screen
-
KN ;lJ
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Figure 10 Intensity distributions in the plane of the screen and 75cm behind the screen.

The next interferometer is more interesting:

28 Mathcad PLUS - [man0009] [_ =] x|
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Model of a screen with two slits, one of them tilted 15° ii
mns i
Definition of a uniform field: F :LPBegjn(ﬂ,A,N)
m m
Aperturing the field by the two slits
F, ::LPRactApmme(ﬂ,E,'_",O,U,F) Fy ::LPRectApmme(f,E,i,0,¢,F)
mom m m mom
+
Mixing the two beams: F .:LPBeamMn{(F IJFZ)
Plotting the intensity distribution in the plane of the screen Iy .:LPInLensiLy@,F)
Propagating a distance z. F =LPFresne1(£,F) I :=LPInr.ensir.y(2,F)
1
size =5 mm M=128 h= 550 mm
w=0. 1 mam h=2.5 mm ¢=151ad

x=0.5mm z=75em

Plane of the screen Intensity distribution a distance z from

the screen
-
I ;I_I
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Figure 11 Intensity distributions in the plane of the screen and 75cm behind the screen.

In the last example the intensity distribution is modulated by the wave, reflected from the grid
edge, nevertheless it gives a good impression about the general character of the interference
pattern. To obtain a better result, the calculations should be conducted in a larger grid or other
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numerical method should be used. The following example uses a direct integration algorithm (the
input and output are in different scales and have different samplings):

[ Mathcad PLUS - [man0010] [_ =] ]
@ File Edit Text Math Graphics Symbolic “Window Books Help _ Elil
Model of a screen with two slits, one of them tilted 150 i‘
nmn= m
Diefinition of a uniform field: F ':LPBegjn(E,A,N)
m m
Aperturing the field by the two slits
Fy ':LPRECLAPEI",WE(E,E,-—X,O,U,F) Fa ':LPRect.Aperture(E,E,i,O,Qb,F)
m m th momom
Mixing the two beams: F :=LPBeamMn:[F I’FZ)
Plotting the intensity distribution in the plane of the screen Iy :=LPInLensty(2,F)
7 SZE ey .
Propagating a distance z: F :=LPForward| =, JHLF Iy :LPIntens:ty(z,F)
pudl 1
size= 2. G-mm H=64 h=350 nm
w=0. 1 mam h=2.5 mm ¢=151ad
x=0. 5mm z=75om size newss-mm
Plane of the screen Intensity distribution a distance z from

the screen
-
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Figure 12 Intensity distributions in plane of the screen and 75 cm after the screen, note that input and
output have different scales, input grid is 2.5x2.5mm, output is 5x5mm

This example uses approximately 25 times less memory than the previous FFT. The calculation
may take from minutes to tens of minutes, depending on the speed of the computer.

5.2.6 Interpolation

The program LPInterpol is the tool for manipulating the size and the dimension of the grid and
for changing the shift, rotation and the scale of the field distribution. It accepts six command line
arguments, the first is the new size of the grid. The second argument gives the new number of
points, the third gives the value of transverse shift in the X direction, the fourth gives the shift in the
Y direction, the fifth gives the field rotation (first shift and then rotation). The last sixth argument
determines the magnification, its action is equivalent to passing the beam through a focal system
with magnification M (without diffraction, but preserving the integral intensity). For example if the
field was propagated with FFT algorithm LPForvard, then the grid contains empty borders, which
is not necessary if we want to propagate the field further with LPForward. Other way around, after
LPForward we have to add some empty borders to continue with LPForvard. LPInterpol is useful
for interpolating into a grid with different size and number of points. Of course it is not too wise to
interpolate from a grid of 512x512 points into a grid of 8x8, and then back because all information
about the field will be lost. The same is true for interpolating the grid of 1xIm to 1x1mm and
back. When interpolating into a grid with larger size, for example from 1x1 to 2x2, the program
puts zeros into the new added regions. Figure 13 illustrates the usage of LPInterpol for the
transition from a fine grid used by LPForvard (near field) to a coarse grid used by LPForward (far
field).
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Figure 13 Illustration of the usage of LPInterpol for the transition from a fine grid used by LPForvard
(near field) to a coarse grid used by LPForward (far field).

5.2.7 Phase and intensity filters

There are four kinds of phase filters available in LightPipes -wave front tilt, the quadratic phase
corrector called lens, a general aberration in the form of a Zernike polynomial, and a user defined
filter. To illustrate the usage of these filters let’s consider the following examples:

[& Mathcad PLUS - [man0012] [_ O] %]
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pm=10 m j
F :LPBegm(m,ﬁ,N) F .:LPRectApenure(E,E,0,0,0,F) F :LPLens(i,0,0,F)
m m I m
I = LPIntensity (2, F) @ =LPPhase(F) +
F :LPFumm(E,F) i=0H- 1 5 g 20 g i)
1 2 H-1

1, :=LPIntensity (2, F)

size=d0mm  h=lpm H=256 = 20 f=gm z=d-m
3 T T T
)
0ol
2

5 | | l
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Figure 14 The phase distribution after passing the lens, intensity in the plane of the lens and at a
distance equal to the half of the focal distance. (from left to right)
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The first sequence of operators forms the initial structure, filters the field through the
rectangular aperture and then filters the field through a positive lens with optical power of 0.125D
(the focal distance of 1/0.125=8m). With the second command we propagate the field 4m forward.
As 4m is exactly the half of the focal distance, the cross section of the beam must be reduces twice.

We have to be very careful propagating the field to the distance which is close to the focal
distance of a positive lens- the near—focal intensity and phase distributions are localised in the
central region of the grid occupying only a few grid points. This leads to the major loss of
information about the field distribution. The problem is solved by applying the co-ordinate system
which is tied to the divergent or convergent light beam, the tools to do this will be described later.

The lens may be decentered, LPLens(8, 0.01, 0.01, Field) produces the lens with a focal length
of 1/0.125 shifted by 0.01 in X and Y directions. Note, when the lens is shifted, the aperture of the

lens is not shifted, the light beam is not shifted also, only the phase mask correspondents to the lens
is shifted.

The wave front tilt is illustrated by following examples:
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Figure 15 The intensity and the phase after tilting the wave front by 0.1 mrad and propagating it 8 m
forward. Note the transversal shift of the intensity distribution and the phase tilt.

In this example the wave front was tilted by 0:=0.0001 rad in X and Y directions, then
propagated it to the distance Z=8m, so in the output distribution we observe the transversal shift of
the whole intensity distribution by 0Z=0.8mm.

5.2.8 Zernike polynomials
Any aberration in a circle can be decomposed over a sum of Zernike polynomials. Formulas

given in [7] have been directly implemented in LightPipes. The program is called LPZernike and
accepts four command line arguments:

1. The radial order n (first column in Table 13.2 [8] p. 465).
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2. The azimuthal order m, ImI<n, polynomials with negative n are rotated 90°
relative to the polynomials with positive n. For example
LPZernike(5,3,1,1,Field) gives the same aberration as LPZernike(5,-
3,1,1,Field), but the last is rotated 90°. This index corresponds to the n-2m
given in the third column of Table 13.2 in [7], p. 465.

3. The radius, R

4. The amplitude of aberration in radians at R

We can uniformly introduce LPLens and LPTilt with LPZernike, the difference is that we pass the
amplitude of the aberration to LPZernike. LPLens and LPTilt accept conventional meters and
radians, which are widely in use for the description of optical setups, while LPZernike uses the
amplitude of the aberration, which frequently has to be derived from the technical description.

A cylindrical lens can be modelled as a combination of two LPZernike commands:

= Mathcad Professional - [man0023.mcd]

ﬁ File  Edit “iew Insert Format Math Symbolics  Window Help =1
F:= LPBegm(0.0], 10'6,256) F = LPCircAperture(0.0045, 0,0, F) Iy = LPIntensity (2, F) j
F = LPZemike(2,2,0.0045, 20, F) F = LPZemike(2,0,0.0045 -10 F) 4

F = LFFresnel(1.55 F)

F = LPInterpal(0.01,256,0,0,-45,1,F) 1 = LPIntensity( 2, F}

Ll ;l;l
Press F1 for help | Auto MUk | Pagel 2

Figure 16 The intensity in the input plane and after propagation through a cylindrical system modelled
as a combination of Zernike polynomials and free space propagation.

5.2.9 Spherical co-ordinates
The principle of beam propagation in the “floating” co-ordinate system (for the case of a lens
wave guide) is shown in Figure 17
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Direction of propagation

Fixed coordinate system

interpolation interpolation
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S plane wave " plane wave o

Floating coordinate system, following the beam.

Figure 17 Illustration for the light propagation in lens wave guides with fixed and floating co-ordinate
systems.

The spherical co-ordinates follow the geometrical section of the divergent or convergent light
beam. Propagation in spherical co-ordinates is implemented with programs LPLensForvard
and LPLensFresnel. Both filters accept two parameters: the focal distance of the lens, and the
distance of propagation. When LPLensForvard or LPLensFresnel is called, it “bends” the co-
ordinate system so, that it follows the divergent or convergent spherical wave front, and then
propagates the field to the distance z in the transformed co-ordinates. The filter LPConvert
should be used to convert the field back to the rectangular co-ordinate system. Some
LightPipes filters can not be applied to the field in spherical co-ordinates. As the co-ordinates
follow the geometrical section of the light beam, operator LPLensForvard(10,10,Field) will
produce floating exception because the calculations can not be conducted in a grid with zero
size (that is so in the geometrical approximation of a focal point). On the other hand,
diffraction to the focus is equivalent to the diffraction to the far field (infinity), thus the FFT
convolution algorithm will not work properly anyway. To model the diffraction into the focal
point, a more complicated trick should be used:
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Figure 18 Diffraction to the focus of a lens using spherical co-ordinates.

In Figure 18 we calculate the diffraction to the focus of a lens with a focal distance of 1m. It is
represented as a combination of a weak phase mask LPLens(f},F) and a “strong” geometrical
co-ordinate transform LPLensFresnel(f,,z,F). The grid after propagation is 10 times narrower
than in the input plane. The focal intensity is 650 times higher than the input intensity and the
wave front is plain as expected.

5.2.10 User defined phase and intensity filters

The phase and intensity of the light beam can be manipulated in several ways. The phase and
intensity distributions may be produced within Mathcad as shown in the next examples:
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Figure 19 An arbitrary intensity- and phase distribution.
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You can also create your own mask with a program like Microsoft Windows95 Paint. In the
next example we made an arrow using Paint and stored it as a 200 pixels width x 200 pixels
height, black-and-white, monochrome bitmap file (for example: arrow.bmp). This file can be
read into Mathcad using the READBMP command. Next the arrow can be used as a filter:
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Figure 20 Illustration of importing a bit map from disk.

5.2.11 Random filters

There are two random filters to introduce a random intensity or a random phase distribution in
the field. The commands LPRandomIntensity and LPRandomPhase need a seed to initiate the
random number generator. Use has been made of the standard C function rand. The
LPRandomPhase command needs a maximum phase value (in radians). The LPRandomIntensity
command yields a normalised random intensity distribution. The LPRandomlIntensity and the
LPRandomPhase commands leave the phase and the intensity unchanged respectively.

5.2.12 FFT and spatial filters

LightPipes For Mathcad 1.1 and later versions provide a possibility to perform arbitrary
filtering in the Fourier space. There is an operator, performing the Fourier transform of the
whole data structure: LPPipFFT.
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Figure 21 Intensity distributions before and after applying a spatial filter

Note, we still can apply all the intensity and phase filters in the Fourier-space. The whole grid
size in the angular frequency domain corresponds to 2mA/Ax, where Ax is the grid step. One
step in the frequency domain corresponds to 2A/x, where x is the total size of the grid.
LightPipes for Mathcad filters do not know about all these transformations, so the user should
take care about setting the proper size (using the relations mentioned) of the filter (still in
linear units) in the frequency domain.

5.2.13 Laser amplifier

The LPGain command introduces a simple single-layer model of a laser amplifier. The output
field is given by:

E(xy)= Jexp —2L | F (x.y) (5.14)

Isut

where Gy is the small signal gain, L is the length of the gain medium, /(x,y) is the intensity
and I, is the saturation intensity.
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F = LPBegin{30,10°%, 50
F = LPGaussHermite (0,0,1,5,F)

F oy = LPGan(0.2,1,3,F )

out T

I, = LPIntensity (0,F ) +

1 LPIntensity (0 F out)

out T

Press F1 far help

ol

Auto NUM | Pagel 2

Figure 22 The effect of a saturable laser gain-section on the field.

5.2.14 Diagnostics: Strehl ratio, beam power

The LPStrehl command calculates the Strehl ratio of the field, defined as:

StrehlRatio =

([TRe(F, (x. »)dxdy] + (][ 1m(E, Cx. ) ey

The next example calculates the Strehl ratio of a field with increasing random phase

fluctuations:

(111, x, kaayf

(5.15)
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The Strehl ratio of a uniform beam is unity: N=z200 ﬂ
) . -6 P
F .=LPEegm(an,1n ,N) F = 1PRecthperture( 25, 25,0,0,0,F) LPStrebi(Fy, 5= ji=0 W1
After application of a random phase filter the Strehl ratio will be less then unity:
i=0.20 M“Phasei =i seedi =i
Field, :=LPRandomPhase(seedi,MaxPhasel, F) Strehl, :=LPStrehl(F1eldi) Phase; :=LFPhase(F1eld.)
4
1
(PhaseU)N
-1 2
- Btrehl, I —
(PhaSEZ)N
Zi o —
2
Phage. et
( ZU)E j2 Uy 10 0
M‘”‘Phase1
—40 1|DD 200 Strehl ratio of a beam with random phase. The
- amplitude of the phase fluctuations is plotted
1 horizantally.
The amplitude of the phase increases with i (=0..20)
-
KN _>I_I

[aun [ [ TPagel /|
Figure 23Demonstration of the use of the LPStrehl function to calculate the Strehl ratio (beam quality).

The LPNormal command normalises the field according to:

F,(x,y)
F =il 5.16
out o (5.16)

P= ” - (x, y)| dxdy

where P is the total beam power.

5.2.15 Polarization.

In LightPipes for Mathcad version 1.3 polarization has been introduced simply by introducing
a second field. Three new commands are introduced in this version: LPPolarizer,
LPReflectMultiLayer and LPTransmitMultiLayer. LPPolarizer outputs a lineary polarized
beam calculated from two input fields for the s- and the p-components. LPReflectMultiLayer
and LPTransmitMultiLayer describe reflection from and transmission through a stack of thin
layers on a substrate respectively. The polarization state, the thickness and the (complex)
refractive index of the layers can be given to calculate more or less complicated coatings and
study their properties.

In Figure 24 we define a linear polarized beam polarized at an angle of 45° because the
amplitudes and phases of the s- and p- components are chosen equal. In Figure 25 the
polarization of the beam is analyzed with the LPPolarization command to simulate an
analyzer. In Figure 26 we simulate a phase retarding plate.
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Falarization can be introduced in the beam using two fields: one for the vertical and SOy j
ane for the horizontal component of the polarized beam.

z=0  y=1 i=x.y

Definition of a linear polarized beam. The polarization angle is 450 because the x and y components
have the same amplitudes and phases

ire A
sze=30mm  A=5508m 17220 E, = LPRegin| e 2 W
! m m
] . E
Aperturing the beam with a circular aperture:. R=10-mm E, = LPCircAperture| —, 0,0, F;
m
Jot4 o
Press F1 for help Auto NUM | Pagel1 2

Figure 24 Polatized beams in LightPipes for Mathcad.

Mathcad Professional - [man0020.mcd]
ﬁ File Edit View Insert Format Math Symbolics Window Help =] x|
=
When we examine the beam with an analyzer we expect maximum beam power at anakyzer angles of 450
and 225% minima at 135% and 3159, i
@ anglyzer = 0001 deg, 5-deg.. 360 deg F anclyzer(® anatyzer) = LEPolarizer (¢ oo B, B )
The total power in the beam can be found using the LPNormal command:
P := LPNormal (EX)N,S + LPNormel (Ey)N,ﬁ +
LPHormal (F analyzer (¢ analyzer))N .
BeamPower|d = ’
( analyzer) P
1
All the beam power of the linearly
polarized hearn is fransmified by the
(logs-less) analyzer when it Js fumed {o
BeatPower($ 4 pvme] 05 1 - 45 or 225 degrees. The heam Is
blocked camplataly when the analyzer
isiturnedto 135 or 315 degress
1 | | |
i o U 1
L] analyzer
deg
EN] v
Press F1 for help. Auto NUM | Page1

Figure 25 Use of the LPPolarizer command to simulate an analyzer.



5-40

“* Mathcad Professional - [man0020.mcd]
#% File Edit View Inset Format Math Symbolics MWindow Help & x|

In the next example we simulate a phase retarding plate (1/4 &, 1/2 A, etc.)

The plate (calcite) has been cut with the principal axis perpendicular to the optical axis of the incoming
linear polarized beam so that the extra ordinary refracting index is minimal

Definition of the refractive index of the plate: e=l o=1 0=

The thickness of the plate must be such that after passage the phase difference between the ordinary and
the extra ordinary polarizations is an odd integer times w/2 radians for the 1/44 plate or an odd integer
times 7 radians for the A2 plate.

di 1-LargeCddInteger

n_-n

o~ e m

n, d
Ei = LPForvard| — ,E1

Examine the beam with the analyzer: T malyzer(q) ma]yzer) 5 LPPolar'Lzer(q; a.nalyzer’Ee’Eo)

Calculate the total power in the beam LPNomlal(F malyzer(ﬁb analyze ))N .
transmitted by the analyser Bemnpower(¢ ana]yzer) - :
P
Press F1 for help Auto NUM | Pagel1 2

Figure 26 Simulation of a phase retarding plate.
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For calcite we have the following indices: n ,=1.66 n =147
LargeOddInteger=1501 d =1.086 -mm
) 1
Tida plate 153-1 _|
: Fara 1744 plale [ y=1/41) we find

circwlar polariztion affer passage
through the plate with half of the power
franamitted by the analyser.

EeamPower(¢ analyzer) 0.5

Farthe 1724 plate { =124 ) we find a
iinear polarized heam with a
0 | | | polanzation angle turmed by B0

0 2908 17906 26005 25003 degrees relalivae (o ihe incaming

¥ analyzer linearly polarized hearm with

e polanzation angle of 45 degreess.
Ll ] D
Press F1 for help Auto NUM | Pagel1 2

Figure 26 Simulation of a phase retarding plate. (cont.)

5.2.16 Reflection from and transmission through multilayer coatings.

The LPTransmitMultiLayer and LPReflectMultiLayer commands describe transmission
through and reflection from a multi-layer film for arbitrary angles of incidence and for p- or s-
polarization. The layers of the film must be input to the commands as vectors for the
thickness and refractive index. The refractive index of the layers can be complex in order to
introduce absorption.
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pen=10"8m nmz]O-gmj

In this example we demonstrate the reflection from and transmission through a coated substrate denoted
by glass[AB(2CIBA] Dair
See Optics Handbook part |, O5A. p. 42,55, fig. 55(b)

Index air: 17 =1 Index substrate: 19, =15 Angle of incidence: 8 ;=0-deg

size = 30-mm ng,idég 5=0 p=1

We Use the smallest grid-size to reduce execution time.

Building the index and thickness vectors of one unit a stack of materials A, B and C organized as
ABCCBA:

Design wavelength: 4 5=500-nm

Refractive Indices:  n ,=138 np=1781 np=23
X X I
Thicknesses: dy= _OL dp = _OL deoo= _O L
12 ny 12 np 12 np
ny da
1g dp
1o do
Weactors for the index and thickness: N, = d, = +
¥ do
np dp
ny da
EN| v
Press F1 for help. | Auta MUM | Page1

Figure 27 Simulation of a multilayer coating using the LPTransmitMultilayer and LPReflectMultiLayer
commands.
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Asgsembling the coating (10 units) using Mathcad's stack command: n=10
. d
JRIEC B g K<—j
for i€ 0. n-2 w
K(—stack(K,Ne) for 1e0.n-2 ‘m
d
K stack K ,—E
m
Defining a multi-wavelength field
Ay
1:= 0..3000 L 1
0.001 + T
[l
Fiel LEB S1ZE ll
1eld, = egin| — ,— .0 .
d1 mm erid
Calculating the field and its intensity after reflection and transmission:
d
'l""iEldREﬂ1 := LPReflecthultilayer (p Mg, N . N,— .8 ,Fieldl)
m
) ) . d
FleldTrans1 = LPTrancmutMultiLayer | p, 2T o, 17 .y ,N,; 8y ,P1eld1
IR‘1 = LPIntensity (O,FleldReﬂl) ITI = LPIntensity (O,FleldTransl)
+ -
N r
Press F1 far help | At MUM | Page?

Figure 27 Simulation of a multilayer coating using the LPTransmitMultilLayer and LPReflectMultiLayer
commands. (cont.)
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Reflected intensity
: T

Transmutted mtensity

i d
A

+
KT _>l—I
Press F1 far help | At MUM | Page3

Figure 27 Simulation of a multilayer coating using the LPTransmitMultilayer and LPReflectMultiLayer
commands. (cont.)






6. Example models

6.1 Shearing interferometer
We can easily model a shearing interferometer using the operators introduced in the previous
sections. Suppose we have to model a device shown in Figure 28.

z

Plane-parallel
plate
input beam

z

Figure 28 Shearing interferometer

E Mathcad PLUS - [Shear Interferometer] !EIB

@Elle Edit Text Math Graphics Symbolic Window Books Help _Iﬁllil

Shearing interferometer. L ame10"m ii

The shearing interferometer consists of a weak negative lens followed by a plane-parallel plate with reflectivity, Rplate that
splits the bearn in two beams and shifts one of the bearns. An interference pattern can be ohserved on a screen

Definition of the light source Field =LPBeg:‘n(sm,l,N)

_— Field :=LPCitcAperture E,D,U,Field
mom o

Transtission of the field through the negative lens and propagation to the plano-parallel plate
o 3 . . Zh.
Field :=1PLens|—,0,0, Field Field :=1PForvard|—, Field
T 1

Reflection of the beam by the front surface of the plate:  Field | ::LPIntALLanuatnr(R Fiald)

plater

Reflection of the beam by the rear suface and shifting the beam D in the x-direction and D in the y-direction:

Field 3 :=LPIntAttermator(1 - B gy, Field) Field 5 :=1Plntetpol

. D
ﬂ,N,E,J,U,l,Fiemz
m m m

Combining the two beams by addition of the fields: Fitld :=LPBeaml\f1uc(F1eld1,F1e1d 2)

z
Propagation of the beam to the screen at a distance z; fram the plate:  Field =]_PFnrvard(—2,Field)
1

I :=LPIntensity(2, Field)

i=0.H-1 xi:=-—+i-

2 H-1 -
[«

»
[aun [ [ TPagel /|

Figure 29 Shearing interferometer program.

6-45

Let z; = 0.5m, z; = 0.5m, A=500 nm, the focal length of the lens is -20m, the beam is divided
1:1 and one of the two beams is shifted by D=3mm in the x-direction and D;=1mm in the Y-
direction after reflection on the back surface of the plane-parallel plate. Figure 29 shows the

calculation in LightPipes for Mathcad.
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Plot of the interference pattern on the screen: + :l
200
I
E,i 100 — —
2
D*ZD 0 20
X.
-
thit
We used the following pararmeters for the calculation:
size=d-cm h=500num, M=256 E=1l-cm Rplar.9505 —I
f=-20-m 2 =50-om 25250 om Dr=3-mm Dy=l-mm
This calculation took about 8" for N=128 and 28" for N=256 on a 120MHz Pentiurn computer with 16Mbyte RAM. For N=512
it took 4'50" to run the program. This was due to disk swapping
A 150MHz Pentiurm with 32Mbyte RAM needed 22" for N=128 and 10" for N=286. N=512 asked 97 27" (Disk swapping)
-
KN

4
[euo T [ [Pagez /|

Figure 29 Shearing interferometer program. (cont.)

We can put a source of arbitrary aberration on the place of the lens. Changing the amplitude
and the order of aberration we can obtain all the shearing interferograms shown in the chapter

about shearing interferometers of [8]. Figure 30 shows the use of the LPZernike command to
obtain these aberrations.

E Mathcad PLUS - [Shear Interferometer] !EIB
@E”B Edit Text Math Graphics Symbolic Window Books Help _Iﬁllil

Replacement of the negative lens by a source of arbitrary aberration. LPLens replaced by LPZemike:

Spherical aberration with Coma with Astigmatism with
LPZernike(d 0,0.01,10 Field) LPZernike(3,-1,0.01,10 Field) LPZemike(2,2 0.007,10,Field)
+
=
KN >
auto Paga 2 /il

Figure 30 Shearing interferograms of spherical aberration, coma and astigmatism.



6-47

6.2 Rotational shearing interferometer

In the rotational shear interferometer the beam interferes with a copy of itself rotated by an
angle o around the optical axis. This interferometer is useful for detecting asymmetrical
aberrations. We shall only consider a bare-bone (no propagation and diffraction) model of such an
interferometer. The results of aberration calculations for coma, astigmatism and high order Zernike
aberration are shown in Figure 32.

[ Mathcad PLUS - [Rotational shear.mcd] M= E3

_?g' File Edit Test Math Graphics Symbolic ‘Window Books Help 18] x|
Rotational shear interferometer. 9 ii

rwn=ll m
_— ) ) oy  fsim A . Fg )
Crefinition of 3 uniform field: Field '=LPBegin |— ,— ,H Field ‘=LPCirc Aperhare |—— 0,0, Fi:ld
m m m

):4
Zer
Introduction of abermration into the field:  Field Z=LPZ€mike(nm,m M’T iy zer,F‘i.eld)

Splitting the beam in truo: Field | ‘=LPBafternor (B g o Field)
Field 5 ‘=LPEdtternator (1 - R p o  Field)

. . - sim ¢IIDT. .
Rotation of one of the beams: Field | ‘=LEPRerpol|— 1,00 ,?,1,F‘1eld1
m 4

lizing the to beams: Field Z:LPBeemij(F‘i.eld 1,-Field 2] I I=LPhitencin 2, Field)

cime =40 mm hE500 ren H=200

lﬂlmtEISU-deg RapElU‘mm Rpg=05

Zernike aberration: 1 g, =3
m e =1
et
+
R g =10mm

A g, =10ad

o

auto HUM | Page 1 ‘/ﬁl

Figure 31 Rotational shearing interferometer.
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[

Cama qu=180"“ Astigmatism ¢,,=2307 High order aberrartion. 4, ,=907
fizer=3, Mze=1, Rzg=10mm, NzZe=2, Mzg=Z2, Rz =10mm, Nze=7. Mzg=3, Rze=10mm,
Az =10 Az =10 Aze =10
-
ki L |
ato [ [NUM | Page 2 G

Figure 32 Rotational interferograms of coma 180°, astigmatism 90° and high order Zernike aberration
90()
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6.3 Radial shear interferometer

In the radial shearing interferometer the beam interferes with a copy of itself magnified by a
factor M. This interferometer is useful for detecting axisymetrical aberrations. As for the
previous case, we shall consider only a bare-bone (no propagation and diffraction) model of
such an interferometer.

[z Mathcad PLUS - [Radial shear.mcd] S [=]

_?QIEile Edit Text Math Graphiczs Symbolic Window Books Help _|E|i|
Radial shearing interferometer. o iI

mu=10"" m

_— . ) g fsim R I Ry .
Definition of a uniform field: Field :=LPEegin | — ,— M Field '=LPCircdperore | —= 0,0 Field
m om m

E
Fer
Intraduction of aberration into the field:  Field Z=LPZ&111.111e(nZu.,m zﬁ_,T ,ﬁzu.,l“i.eld)

Splitting the beam in two: Field | ZZLPRWM(RBS,F&M;]

Field 3 =LPht Attarostor (1 - R g Field)

Radial magnifigation of ane of the beams: Field ) Z=LP1nm'pol(ﬂ,H,U,D,D ML Field 1)
m

Mizing the two beams: Field ‘=LPBeanhlix (Fiald 1-Field 2) I ‘=LPEdensity 2 ,Field)
cimSd0mmm ASSO0mm  M=200 +
M=13 R@Elﬂm R pg=0.5
Zernike aberration: 1 g, =10
m g =t
F g, Sl0mm
A 7 =107sd

s

auto [ |NUM [ Page s
Figure 33 Radial shearing interferometer.
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Defocus ki=1.3 Spherical abermration hi=1.3 High order aberratdion. hi=1.3
Nzam2, Mza=0, Rza=10mm, nza=d, Mze=0, Rzo=10mm, nze~ 10, mze=4 Rza=10mm,
Aizo =10 iz =10 Hiza =10

i of

[awo | [NUM[Pagez 7

Figure 33 Radial shearing interferometer. (cont.) Radial shearing interferograms of defocus, spherical
aberration and higher-order aberration.
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6.4 Michelson Interferometer.
In this example we simulate a Michelson interferometer without and with a mis-aligned mirror
to demonstrate circular and localized fringes.

¥ Mathcad Professional - [Micheld.mcd]
#% File Edit View Insen Format Math  Symbolics Window Help =181 x|

The Michelson interferometer. me10"m  mads10” 3

The Michelson interferometer has a beam splitter to split the beam in two parts. The two beams are
reflected from twa mirrors of which one of them is movable. After the beams pass the beamsplitter again,
they are recombined and fringes can be observed an a screen. One of the mirrors can be tilted to change
the farm of the fringes.

_— ) R
Definition of the beam: F = LPEegn g,f, F = LPCuchperture|—,0,0,F
m m m
: f
Wealk converging lens F := LPLens (_,0,0,P)
m
1
Propagation the beam a distance z1 towards the beamsplitter F := LPForvard|— ,F
m

Splitting the bearm in two: Fq:= LPIntAttenuator(R BSJF)
F 5 = LPIntAttennator (1 - R pg, F)

Fropagation of beam #1 to the mirror at z2 from the beamsplitter and back to the beamsplitter:

2
F = LFForvard| —-2,F 4
m

Propagation of beam #2 to the second mirror at 23 from the beamsplitter, tilting the mirror and
propagation back to the beamsplitter:

Z3 v Z3
F 5 = LPForvard|—~ F 5 F o= LPTi(t .ty F ) Fy = LPForvard) =.F

n

Passing beam #1 through the beam splitter and reflecting beam #2 at the beam splitter:
F | = LPIntAsennator (1 - R g F 1) F 5 = LPIntAnennator (R g5, F )

EN| _>|_I
Brace F1far haln Auntn NI Banat -
. g LoD B

rm—mmmee e Hizem — —~— . = - 1

Figure 34 Simulation of a Michelson interferometer.

% Mathcad Protessional - [Micheld.mcd]
#% Eile Edit Wiew Inset Format Math  Symbolics Window Help =& =]
=l
Combining the two beams: F= LPBearerx(P 1.F 2)
) z4 o
Propagation of the beam to the screen at z4 from the beam spitter, T = LFForvard | — ,F
m
Calculation of the intensity at the screen T := LPTntensity( 2, F)
Press F1 far help Auto NUM | Pagel 2

Figure 34 Simulation of a Michelson interferometer. (cont.)
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Results:
Size and wavelength of the source and radius of the
aperture
size = 25-mm A=500nm  E=12-mm M=250
Distance from source to beamsplitter z1=10cm
Distance from beam splitter to screen: z4=10cm
Beamsplitter reflection Rpg=05
Tilt of the second mirror: tYEO.O-mrad
b =0.0-mrad
Fringes on the scraen
n
Focal length of the lens f=500 cm
Distance from beam splitter to second mirror: zg=10cm
) ) ) _ a
Distance from beam splitter to first mirror: 2250, om + -~ FRAME
32 _
N 3
Press F1 far help Auto NUM | Pagel 2

Figure 34 Simulation of a Michelson interferometer.(cont.) Circular fringes with aligned mirrors.

== Mathcad Professional - [Micheld.mcd]
A8 Cle Edit Wiew Inset Fommat Math  Symbolics  Window Help =1

Results:

Size and wavelength of the source and radius of the
aperture

size = 25-mm A=500nm  E=12-mm M=250
Distance from source to beamsplitter z1=10cm

Distance from beam splitter to screen: z4=10cm

Beamsplitter reflection Rpg=05
Tilt of the second mirror: tYEO.O-mrad
t,=0.5mrad
Fringes on the scraen
+ n
Focal length of the lens f=500 cm
Distance from beam splitter to second mirror: zg=10cm

) ) ) . "
Distance from beam splitter to first mirror: £ a0 cm + = FRAME

Press F1 far help Auto NUM | Page2 2

Figure 35. As Figure 34 with one of the mirrors mis-aligned to demonstrate localized fringes.
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Using the animation feature of Mathcad it is illustrative to make a movie of the fringes while a
mirror is moving. To do this let the variable ' FRAME' (See the Mathcad documentation) run from
0 to 31 in the examples shown in Figure 34 and Figure 35.
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6.5 Twyman-Green interferometer
An example of the Twyman-Green interferometer is shown in Figure 36. Mirror 1 is plane and

mirror 2 is aberrated (coma) with an aberration amplitude of 1um. The beam splitter is ideal and
divides the beam 3:7.

’E Mathcad PLUS - [Twyman-Green.mcd] (_ O]

towmards the beamzplitter:

@ File Edit Text Math Graphice Sembolic ‘window Books Help — |ﬁ'|i|
The Twyman-Green interferometer. =1 m mrd=107 :|
hirror 1 Cefinition of the beam:
F :=1.1=E:-=gin(ﬂ ,i ,N)
: F 3 m
: S 3
. z, FSLPCire dperhme |— 0,0 F +
, : z,
‘ 1 » : - Fropagation the beam a distanee 21

Sy )

Mirrar 2
Z, Splitting the beam in fuo:

heam splitter

F | =LPRedtamior (R pg F)

Screen F o SLPhtdtanster(1- R pg F)

I
2
Propagation of baam #1 to the mimar at =2 fram the beamsplitter F | Z:LPF‘wwrd(—-ﬁ,F 1)
and badk to the beamsplitter: =

Fropagation of beam #2 to the second mirror at 23 from the beamsplitter, deforming the miror and
propagation badk ta the beamsplitter:

. %3 . L I3
FQ.—LPFM(;,FQ F =LPZmniefngm R oA F o R i

i o

auto [ [MUM | Page b

Figure 36 Twyman-Green interferometer.
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Fassing beam #1 through the beam splitter and reflecting beam #2 at the beam splitter:

F | =LPhthnenor(1-Rpg F ) F ‘=LPRwhttemaer (B g F g
Combining the b beams: FZ:LPBemij(Fl,Fg)
]
Fropagation of the beam to the screen at z4 from the beam splitter: F Z=LPF‘urv:m‘l(—4 ,F)
m

F '=LPhterpoli0.012 128 ,0,0,0,1,F)

Calculation of the intensity at the screen: I '=LPhutersiyr 2 F)1-2
Results: Size and wavelength of the souree and radius of the aperture:
£ize =30 1mm A=500 1en E=5mm H=200

Distance from source to beamsplitter = S50an

Distance from beam splitter to first mirror: =5 S4an

Distance fram beam splitter to second miror: x5 S400an

Distance from beam splitter to screen: % 4 =100-an
Fiinges on the soeer
+ Beamszplitter reflection: F pg=30-%
Zernike arquments:  ng m =1 R ,=0.005

auto | |NUM|Page 2 A

Figure 36 Twyman-Green interferometer. (cont.)
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6.6 Unstable laser resonator

The unstable resonator can be simulated starting with an arbitrary field that circulates
between the mirrors towards a steady state solution: the eigen-mode of the resonator. In
this example we simulate a positive branch, confocal unstable resonator . In stead of
mirrors, we use a lens-guide of alternating positive and negative lenses, separated a
distance, L, the resonator length. The arguments of the commands have been made
dimensionless by dividing them by their units.

Confocal Unstable Resonator

Lens guide model

e

Figure 37 An unstable confocal resonator and its equivalent lens guide.
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Simulation of a hard-edge unstable resonator . I
i=0.n

Command explanation: +
F= I{.—Lli'}éieg;in(E ,E,N) ----- Definition of the start-field.
m m
for i€0.n
K*—LPR.ecLApetbm(‘En,E,U,ﬂ,U,K) ------ Transmission through a rectangular aperture with width, R
m

G -4 4
Aiay (1,10 A0 ’K) - Transimiszion through a gain medium

£
1L
K“LPLWFM(; :; :K) ------ Transmission through the negative lens and propagation of a
distance, L, using spherical coordinates.

K'—LPGajn(l ,10"‘ ,10" K)

. v T Transimission through a gain medium
2L
Ko LPLacF (; ’; ’K) ------ Transmiszion through the positive lens and propagation of a
Ko LDTik E distance, L.
~LPTIRL oty K)
Mi'_LPMKJN B Intraducing mirar mis-alignment.
e Calculation and storage of the Strehl ratio for the i roundtip
sime
E+ LPhdetpol | — H,0,0,0,1 K
" (m ey ) ------ Interpolation of the field to the original grid.
F+—E
i
( : )
L - Output structure

e

ata [ |NUM | Page 1 i

Figure 38 Simulation of a hard-edge confocal unstable resonator.
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Here we extract the calculated fields, the nommalizations of the field and the Strehl ratios from the solution structure, F: :I
Field, = (Fn)i Stwabl 1=F,

After the field inside the resonator has been caleulated we convert to normal co-ordinates and screen the field with a
circular screen to calculate the outcoupled (near field:

E R
Field, ::chm(mmi) Field, Z:LPR.ecLSmm(;,— 00,0 ,F‘j;eld.)
i i W i

Ii Z=LPh'n‘.msity(2,F‘ie1de ----- Calculation of the nearfield intensity and phase (Bitmap)
Phase, ‘=LPThase (Fl.eldi]
3

mrad=10 " rad =10 m

The simulation has been done using the following

parameters:
W=w00 e number of grid points
sim=l4mm grid size
j=0.LH-1 S 08mm 0 wavelength (*eCl excimer laser)
£ fi=-10m foeal length negative lens
(Ph“en:lj E . R=548mm 00— width of the outcoupling mirroer.
o 2 fa=20m - focal length positive lens +
L=llm e resanator length
—20 5|U 100 nslo number of roundtrips calculated.

i t =000 mrad LYEEI.DD'mmd ---- mirror mis-alignment v|

»
Prezs F1 far help. auto MUM | Page 2 A

Figure 38 Simulation of a hard-edge confocal unstable resonator. (cont.)
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Nomealization coeficient and Streh! miio 22 3 funchion of
the numherof mund ios. In

i o

[aso | [MUM[Page3 4

Figure 38 Simulation of a hard-edge confocal unstable resonator. (cont.)
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6.6.1 Calculation of the far field

The far-field can be calculated by propagation of the field to the focus of a lens. Because
the density of the grid soon becomes too low for a correct calculation we use spherical
co-ordinates using the LPLensFresnel command. The LPLensFresnel(z,z) command,
however, cannot be used for propagation to the focus, because the program tries to define
a zero grid dimension and hence will generate a floating point error. To solve this
problem we can use an extra weak positive lens with focal length f and propagate the
field to a distance z using spherical co-ordinates with the LPLensFresnel(ff,z) command.

z is the focal length of the combined lenses:
I 1 1

z fr f
or:

_
Iy F

Eﬂalhcad PLUS - [Unstable Resonator: Rectangular. MCD] - (O =|

E‘I File Edit Teat Math Graphice Symbolic ‘Window Books Help - |ﬁ' |5|
The size of the farfield zan be estimated from the size of 3 uniform illuminated screen with the same dimensions as the ;I
(SQuare) convex miror:

ap=ahd d1=0.112 mam
R

-z
Because the size of the farfield iz given by: smﬁr%m(‘ )=—z-si.'.ne

we can state that the focal length of the positive lens must be smallerthan: %-si’.ﬂe

2.
On the other hand the number of grid points must be sufficient in the far field. An optimum value of f must be found
experimentally. We use:

f=40"m E-si'.ne =124.545m
h
i i g
Here we calculate the far field: F (=LPLane |—,0,0 ,1<"ielcln F (=LPLensFreael [ — — F
m
Converting badk to normal coordinates: F =LPCormrert(F

The size of the far fiald (calculated with the LFLensFresnel command) iz also stored in:sime g ZZFN o sim g =035 mm —I

sim g sim g

The farfield intensity iz I '=LPRitensity( 1 F rj = 5 +j-N i
I.
The divergency is: EJ- il
= Fur field intencity
L f=4im J T
0.5
r=i]
i @g@ 2=1m - -
0.3
-1 T T T - N
-1 05 0 0.5 1 —200  —loo 0 100 200
LPhtanciny 1 F) Divvergency fmicoFad] + _ILI
[ | y

lauwo [ [NUM[Paged  ~

Figure 38 Simulation of a hard-edge confocal unstable resonator. (cont.)
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e can compare the Far field with that of a uniform illuminated screen:

. (ﬂ.R ) 2
e
E ‘T
= Bz = 0 L
e TR
i
hem the nest commands:

The foous is smallerthan that of a uniform field
because in this example the nearfield intensity is
concentrated around the screen. Compare the
analytical farfield pattern with that calculated with

I.
2
juididig

Press F1 for help.

Fy ZZLPBeg;in(E iN) Fy, ::LpRenApmmE,E,u,n,n ,Fu)
m m m
Iy
77 . f N Tf o
2 oasp - Fypi=LPLas|—,00,F, Fy i=LPLasPusel[ = 24F,
e )
i
I, :=Lphn.msjty[1,1-“u)
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Figure 38 Simulation of a hard-edge confocal unstable resonator. (cont.)
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For a nice surface plotwe interpolate to a small number of grid points and to the size of the farfield: :I
sime g
F '=LPhiterpol J30,0,0,0,1F I =LPERtersin 1,F)
m
Far Field Faensity distritnmtion

i o

Press F1 for help. auto MU | Page B i

Figure 38 Simulation of a hard-edge confocal unstable resonator. (cont.)
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6.7 Propagation in a lens-like/ absorptive medium.

In this example we model the propagation of a Gaussian beam in a lens-like waveguide.
The profile of the refractive index is chosen such, that the beam preserves approximately
its diameter in the waveguide (we use the fundamental mode). We'll consider the
propagation of an axial mode, tilted with respect to the waveguide axis and a non-axial
mode. In Figure 39 the quadratic index profile of the absorptive lens-like medium is
made.

¥ Mathcad Professional - [man0024 MCD]
ﬁ File Edit “iew Insert Format Math  Symbolic: Window  Help _Iﬁllﬁl

ey
Iumslﬂ_ﬁ-m mrad=107" rad j

size =1 -mm h=1-pm =100
ng=li nls-fllJD-m'2 R=113-pm B =1 mrad dz=1-mm
. . siEe . size size . size
i=0.H-1 j=0.H-1 T —— 41 ¥ T — 4+
! 2 H-1 ] 2 M-1
Here we form the distribution of the complex refractive index:
. 2 2 2 . .
£ "Jﬂﬂ 'nﬂ'nl'[("i) + () ] PR RIS

Distribution of the (real part of the) refractive index:

Feln) w7
4] | LI_I

Press F1 for help. Auto MUK | Page 1 i

Figure 39 Construction of a quadratic refractive index profile.
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Distribution of the imaginary part (absorption) of the refractive index: ﬂ
- 14995
- 149992 -
- 1.45994—]
- 149996 —]
- 145996
=
T 1)
o of
Prezs F1 for help. [t [ [NUM|[Page1

Figure 39 Construction of a quadratic refractive index profile. (cont.)

In Figure 39 we use the approximation for the profile of the refractive coefficient in the
form: n* =n; —nyn,r’. Itis a well-known fact [9] that the half-width of the fundamental

. . L , 2 .
Gaussian mode of a lens-like waveguide is defined as: w; = ————— . For a waveguide

K(nyn,)?
of I1xImm, ny=1.5, n;=400 and A=1um, the Gaussian mode has a diameter of 226um.. In
Figure 40 we demonstrate the propagation of a tilted Gaussian beam through the
waveguide.



6-65

athcad Professional - [man0024 MCD]
§ File Edit “iew Inzert Format Math  Swmbolic: Window Help _|ﬁ||1|

Below we describe the propagation of a Gaussian beamn through the medium using LPSteps:

o— N
i m

Field = K*—LPBegjn(sme & )
R

K—ILPGaussiperture (_, 00,1, K)
1

8
*0K

K.~ ILPTilt
rad

for ke 0. 100
K*—LPSteps(E,ID,n,K) | |
m

F~K

Calculation of the intensity and extraction of the radial energydistribution in both directions:

Noce PLi
Int, :=1 Platensity (0, Field, M = (IntiT) i y<i> = ()
|« | Ll_l
Press F1 for help. [un | [HUM|Pagel 2

Figure 40 Propagation of a tilted Gaussian beam in a lens-like absorptive medium.
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Figure 40 Propagation of a tilted Gaussian beam in a lens-like absorptive medium. (cont.) Radial
energy distribution in the x-direction.
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Figure 40 Propagation of a tilted Gaussian beam in a lens-like absorptive medium. (cont.) Radial
energy distribution in the y-direction.

It can be shown that a reversed propagation of the beam using LPSteps yields the same
input beam. The result of the propagation of a shifted Gaussian beam, incident parallel to
the axis is shown in Figure 41. The result of the propagation of two shifted Gaussian
beams, both incident parallel to the axis of the waveguide is shown in Figure 42. LPSteps
is a "rich" filter. Whole classes of waveguide devices can be simulated. The simple
examples in this manual illustrate only the very basic capabilities.
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Figure 41 Propagation of a shifted Gaussian beam incident parallel to the waveguide axis.

i* Mathcad Professional - [man0D24 MCD]

ﬂ File Edit “iew Insert Fomat Math  Symbolic: Window Help _Iﬁllﬁl

o

| &) ¥ -
<1 | ;lJ
Presz F1 for help. Auto MHUM | Page 2 o

Figure 41 Propagation of a shifted Gaussian beam incident parallel to the waveguide axis. (cont.)
energy distribution in the y-direction.
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Below we describe the propagation of two separated Gaussian beams through the medium using B
LPSteps:
Field = K*—LPBegjn(me,E,N)
m m

K I_LPGaussApertme(E,z-m“‘,u, 1,1{)
i

KZ_LPGaussApertme(E,.::-m"‘,n, I,K)
hid8
Ko LPBeandix(K | K 5)
for ke 0100 ol
K*—LPSteps(E,IU,n,K)
m

F—K

e o

Prezs F1 for help. Auto MUK | Page 2 i

Figure 42 Propagation of two Gaussian beams incident parallel to the waveguide axis.
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Figure 42 Propagation of two Gaussian beams incident parallel to the waveguide axis. (cont.)
Radial energy distribution in the x-direction.
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Figure 42 Propagation of two Gaussian beams incident parallel to the waveguide axis. (cont.)
Radial energy distribution in the y-direction.
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6.8 Inverse problem: reconstructing the phase from measured
intensities.

E Mathcad PLUS - [Phase Recovery] !EIB
E3) Eile Edit Text Meth Grephics Symbolic Window Books Help _ =] x|
Reconstruction of the Phase from measured intensity o ii
" - - = m
distributions.

Suppose we have measured two intensity distributions of a beam with for example a ccd camera: one in the near field and
one after propagation of a distance z. The two intensity distributions have been stored on disk: The near field in file:
“fnear.pm" and the far field in the file “/far.prn”. The data can be read using the READPRMN commands:

Reading the expenmental data of the near field and the far field intensity patterns from disk:

I e = FEADFRN( Inear) I 3y '= READPRI(Ifar)

size=11-mm

h=632.28 nm

Measured near field intensity Measured far field intensity after
propagation of z=2rm.

The knowledge of these intensity patterns is sufficient to reconstruct the phase of the bearn. To do this we repeatedly

substitute the far field intensity in an arbitrary (uniforr) field, propagate this field back to the near field position, substitute the
near field intensity and propagate to the far field. After sufficient iterations the phase and the intensity of the beam become

stable after each iteration and the phase distribution has been recovered -

L | ’
[ [NUM [Page 1 /_,I

Figure 43 Reconstruction of the phase of a beam from two measured intensity patterns.

E Mathcad PLUS - [Phase Recovery] !Em

@Elle Edit Text Math Graphics Symbolic Window Books Help _|Ei|
-

Of course, when we propagate the measured near field intensity to the far field without knowledge of the phase pattern we
cannot expect to find the measured far field intensity pattern. To demonstrate this we propagate the ngﬁrﬂeld with an arbitrary
{uniform) phase distribution to the far field:

N omrows(l ) F o =LFBegin|“= A F oy = LPSublntonsity (100 F o)
moom _I
- z - :
F farl = LPFresnel(;,F near) I farl = LPIntensﬂ.y(E, F farl)

The "far field” calculated from the
near field intensity pattern if this has
a uniform phase.

i of

[ T NuM[Pagel |
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Figure 43 Reconstruction of the phase of a beam from two measured intensity patterns. (cont.)
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FY

The iteration for reconstruction of the phase pattern goes as follows: + _I

Mumber of iterations:  n=100

Dimension of the bigger grid, necessary for LPForvard:  size o =30 N =258

A= K'—LPBegjn(ﬂ,ﬁ,N) The iteration starts with a uniform field.
m i
for kel.n
K'_LPSUbImenSﬂ'y(I fﬁf’K) Here the measured far field intensity is substituted. _I

siZe .

K—LPInterpol( iy} e 0- 0.0, 1K Interpolation to a bigger grid to make LPForvard happy.
m

z
K'—LPForvard(-;,K) Back propagation of the far field to the near field plane

K,_LPIntefpal(ﬂ,N,D,D,g,1:}{_) Interpolation to the original grid.
m

K—LP3ublntensity (I LK
LIE 9n513’( near ) Substitution of the measured near field patterm.

K—LPFresnel(i:K) Propagation of the near field to the far field plane.
Outy — K Fill the output structure.
Out
-
KN '
[ [ MNuM[Pag=2 | 4|

Figure 43 Reconstruction of the phase of a beam from two measured intensity patterns. (cont.)

E Mathcad PLUS - [Phase Recovery] |
ES| Fle Edit Text Mah Graphics Symbolic Window Books Help =

. . . o z
The reconstructed near field after n iterations is: L T .-LPFarvaxd(-;,An)

I

et L LPIntensﬂy(Z,F

neate c)

Reconstructed near field Original measured near
intensity, | . oree field intensity, | ..
. . — z
The far reconstructed far field is calculated by: F farren ._LPFresnel(;,Fnemec)
Turpeq =LPIntensity(1F greo) [ |

Reconstructed far field Original measured far
intensity, L pee field intensity, |,
-
< | ;I_I
MNUM | Page 2 4

Figure 43 Reconstruction of the phase of a beam from two measured intensity patterns. (cont.)
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The reconstructed phase pattemn of the near field is (interpolation to rotate the contour plot 90 degreesj": d

o size o
F o oarrec .-LPInLerpol(?,N,D,D,QD, 1,F mmec) P earrec .-LPPhase(F mmc)

&

fiearrec

The reconstructed phase pattern of the near field.

i of
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Figure 43 Reconstruction of the phase of a beam from two measured intensity patterns. (cont.)
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6.9 Optical information processing.
LightPipes for Mathcad can be used to model classical setups of Fourier-optics

information processing. For example Figure 44 models an optical computer performing
Fourier-plane image filtering.

¥ Mathcad Professional - [Optisch Filter MCD]

#§ File Edit “iew Inset Fomat Math  Symbolics ‘Window Help
Import The intensity mask; M := READENP( "dimesut bmp") N := rows()

Place the mask in the beam: F:= LPBegin(0.0l 500 IO'Q,N) F = LPSubIntensity( M, F) I = LPIntensity (0, F)

el
Press F1 for help.

e[ NOM [Pz
Figure 44 Optical information processing (Fourier optics).

“* Mathcad Professional - [Optisch Filter. MCD]

#% File Edit Yiew Inszet Fommat Math  Symbalics  Window  Help

=
Propagate through the first lens .
o thpe f%cua g F .= LPForvard(1,F) F = LPLens(1,0,0,F) F = LPForvard(1,F) I gy = LPIntensity (0, F)

Filter the focus with an aperture or a screen to remove high- or low frequency components and propagate through the second
lens to the image plane:

- : o [l
F HighFreg = LPCircAperture(0.0015,0,0,F) F HighFreq = LPForvard(l JF HighPreq)
F fighFreq = LPLens (1 ,0,0F H@Ereq) F HighFreq = LPFomard(l F HigFre q) T figfiFreq = I Plntensity (2 F HighFre q)

F I owPreq = LPCireSereen(0.0015,0,0,F) F LowFreq = LEForvard(LF [ ooy

F LowFreq = LPLens (l :0,0.F LowPreq) F LowFreq = LPForvard(l .F LowPrecJ ILowPreq = LPIntensity (2 F LowFreq)
st o
Press F1 for help Auto MNUM | Pagel 2

Figure 44 Optical information processing (Fourier optics). (cont.)
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Filtered with high-frequency Filtered with low-frequency
COMPONEnts cut COmponents cUt

QOriginal mask:

DIMES
UTwente

Intensity in the focus:

el 1 3
Press F1 for help. Auto MUK | Page2 2

Figure 44 Optical information processing (Fourier optics). (cont.)

The initial distribution and two filtered images are shown in Figure 44. Also shown is the
intensity distribution in the focal plane of the two lenses.
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6.10 Generation and reconstruction of interferograms.
In the simplest case the interferogram (hologram) is generated by mixing of an aberrated

beam with a plane wave:

i Mathcad Professional - [holographics. mcd]
ﬁ File Edit Wiew |nsert Format Math  Symbolicz  Window Help - |ﬁ'|l|
First we construct an aberrated beamn using Zernike aberration: ﬂ
. f -6 . ; -2
F oy .:LPEIegm(D.Dl,lD ,EDD) F oy .:LPZennke(?,-l,D.?E-lD JA0,F ab)
Phase = LPPhase(F ab) Phase = LFPhaselnwrap(1, Phase)

ofl

ITs
[dto [ [ [Page3

Press F1 for help.

Figure 45 The phase distribution of the aberrated beam generated using the LPZernike
command.

In Figure 45 the phase distribution of an aberrated beam is shown. The beam has been
made using the LPZernike command. Mixing this beam with an ideal plane wave yields

an interferferogram as shown in Figure 46.
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Here we generate the reference beam, mix it with the aberrated beam to obtain the interferogram. We tilt the
aberrated beam to get vertical ftinges:

. . -z
F .-LPTﬂt(E-lD 0,F abjl

| |

- . g - . _ .
F ot =1PBegin(001, 10°°, 200) F prixed = LPBeandix(F o F 0 Vinterferagram -= LPIntensity (2F iy o)

I

i of

Prezz F1 for help. Auto Page 2 2

Figure 46 Intensity distribution of the interference pattern obtained by mixing the aberrated beam
with a plane wave.

To reconstruct the phase from the obtained interferogram we shall build a model of the
algorithm of phase reconstruction, using shift and filtering in the Fourier domain. Let the
fringe pattern has the form:

g(x,y) =c(x, y) exp(27ifyx) + ¢ (x, y) exp(—27f , x) (6.1)
where:

1
c(x, y)= 5 expiy(x, y)) (6.2)

where the phase ¥(x,y) contains information about the mirror shape and the term fjx
describes the wavefront tilt. Fourier transform of expression (6.1) gives:

G(f, ) =Afs +C(f + fo, )+C (f = fo, ) (6.3)
where the capitals A and C denote the Fourier spectra and fis the spatial frequency. We
may take one of the two side-lobe spectra C(f + f,y) or C (f —f,y) and translate it to
the origin with zero spatial frequency. Now we can take the inverse Fourier transform of
the translated spectrum to obtain c(x,y) defined in the expressions (6.1) and (6.2).
Calculating the complex logarithm of the expression (6.2) we obtain the phase ¥(x,y):

iy (x, y) =loglc(x, y)] (6.4)
The phase y(x,y)is obtained indeterminate to a factor 2w with its principal value
localized in the range of -7...7. To obtain the continuous phase map a special
unwrapping algorithm, removing discontinuities with an amplitude close to 27 is applied
to the reconstructed phase map. The algorithm implementation includes the following

steps shown in Figure 47:
After the substitution of the interferogram (hologram) into the field the spectrum of the
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initial intensity distribution is calculated with LPPipFFT. It consists of a central lobe and
two side-lobes containing information about the phase.

1.

2.

»

Shift of the obtained spectrum to put one of the side lobes into the origin with the
LPInterpol command.

Filtering, leaving only the side lobe containing the phase information. This operation
is performed as a product with a rectangular spectral window LPRectAperture.
Reversed Fourier transform using LPPipFFT.

Calculation of the phase with LPPhase and unwrapping it with LPPhaseUnwrap.

¥ Mathcad Professional - [holographics.mcd]

ﬁ Fil= Edit \iew Inzert Format Math Symbelics  ‘Window Help 5] x|
Ta reconstruct the phase of the aberrated bearn we first substitude the hologram in the (reference) beam: [
. . -6 -~ .
Fp = LPBegin{p.01,10°, 200) F rec ‘= LPSublntensity 1o oo arame F rec)

Than we Fourier transform the field and shift the spectral domain:

- . - -3
F rec =LEPIpFFT(LF 1. ] Foocshifted = LPInterpolI[D.Dl ,200,107°,0,0,1,F m)

Mext we filter the beam in the Fourier domain and apply a reverse Fourier transformation: [

L -4 . :
F tecihifted =LFRectsiperture |[15-ID ,L000F recShjﬂed) F techhifted =LPPipFFT (’ LF recShjfLed:I

Finally we calculate the pahse and unwrap it:

Phase .. :=LFPhaseUnwrap (1 ,LFFPhase (F recSh.iﬂed):I

o o

Prezs F1 for help. At Page 2 o

Figure 47 Algorithm to reconstruct the phase from the interferogram.

The result is shown in Figure 48.
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Figure 48 Reconstructed phase.

The initial interferogram is even (symmetric) with respect to the vertical axis, but the
phase is odd, thus the phase is reconstructed with inverted sign (this depends on the
direction of the shift in the frequency domain). The amount of shift in the frequency
domain can be calculated using relations, given in section 5.2.12 containing the
description of the LPPipFFT command, it also can be determined experimentally by
visualizing the spectrum and shifting it to position one of its side lobes at the origin. This
can be done with the LPInterpol command. Visualization of the spectrum side lobes
requires a high gamma of the (bitmap) picture (of the order of 10).
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7. Command reference

The following commands are available in LightPipes for Mathcad. Please refer to the
Iphelp.mcd document in the ....winmcad\lphelp directory for more details.

LPAxicon(phi,nl.x_shift,y_shift,Field)
propagates the field through an axicon.
phi: top angle in radians;

nl: refractive index (must be real);
x_shift, y_shift: shift from the centre.

LPBeamMix(Fieldl,Field2)
Addition of Fieldl and Field2. If the wavelengths are different, a new, average
wavelength, will be calculated.

LPBegin(grid_size,Jambda.grid_dimension)

initialises a uniform field with unity amplitude and zero phase.

grid size: the size of the grid in units you choose,

lambda: the wavelength of the field with the same units as the grid size,

grid dimension: the dimension of the grid. This must be an even number larger than 8.

LPCircAperture(R,x_shift,y shift,Field)
circular aperture.

R=radius,

x_shift, y_shift = shift from centre.

LPCircScreen(R.x_shift,y_shift,Field)
circular screen.

R=radius,

x_shift, y_shift = shift from centre.

LPConvert(Field)
converts the field from a spherical grid to a normal grid.

LPForvard(z,Field)
propagates the field a distance z using FFT.

LPForward(z,new_size,new_number,Field)
propagates the field a distance z, using direct integration of the Kirchoff-Fresnel integral.

LPFresnel(z,Field)
propagates the field a distance z. A convolution method has been used to calculate the
diffraction integral

LPGain(Isat,gain.length.Field)
Laser saturable gain sheet.
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Isat=saturation intensity,
gain= small signal gain,
length=Ilength of gain medium

LPGaussAperture(R.x_shift,y_shift, T ,Field)
Gauss aperture.

R=radius,

x_shift, y_shift = shift from centre;

T= centre transmission

LPGaussHermite(n,m,A,w0,Field)
substitutes a TEMm,n mode with waist w0 and amplitude A into the field.

LPGaussScreen(R,x_shift,y_shift,T,Field)
Gauss screen.

R=radius,

x_shift, y_shift = shift from centre;

T= centre transmission

LPIntAttenuator(Att,Field)
Intensity Attenuator. Attenuates the field-intensity by a factor Att

LPIntensity(flag,Field)

calculates the intensity of the field.
flag=0: no scaling;

flag=1: normalisation of the intensity;
flag=2: bitmap with gray scales

LPInterpol(new_size,new n,xs.ys,phi,magn,Field)
interpolates the field to a new grid.

new_size: new grid size;

new_n: new grid dimension;

Xs, ys : the shifts of the field in the new grid;

phi: angle of rotation (after the shifts);

magn: magnification (last applied)

LPLens(f.x_shift,y shift,Field)

propagates the field through a lens.

f: focal length;

x_shift, y_shift: transverse shifts of the lens optical axis

LPLensForvard(f,z Field)

propagates the field a distance z using a variable coordinate system.
f: focal length of the input lens:

z: distance to propagate
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LPLensFresnel(f,z Field)

propagates the field a distance z using a variable coordinate system.
f: focal length of the input lens;

z: distance to propagate

LPMultIntensity(Intensity,Field)
multiplies the field with an intensity profile stored in the array: Intensity

LPMultPhase(Phase,Field)
multiplies the field with a phase profile stored in the array: Phase

LPNormal(Field)
normalizes the field. The normalization coefficient is stored in Field(n_grid,6)

LPPhase(Field)
calculates the phase of the field

LPPhaseUnwrap(Phase)
unwraps phase (remove multiples of T)

LPPipFFT(Direction,Field)

Performs a Fourier transform to the Field.
Direction = 1: Forward transform;
Direction = -1: Inverse transform

LPPolarizer(Phi,Fx,Fy)

Polarizer. Ouputs a linear polarized field.

Phi=polarizer angle,

Fx, Fy=input fields of horizontal and vertical components.

LPRandomlIntensity(seed)
Random intensity mask.
'seed' is an arbitrary number to initiate the random number generator

LPRandomPhase(seed,max)

Random phase mask.

'seed' is an arbitrary number to initiate the random number generator;
'max' is the maximum value of the phase.

LPRectAperture(sx,sy,x_shift,y_shift.phi,Field)
rectangular aperture.

sX, sy: dimensions of the aperture;

x_shift, y_shift: shift from centre;

phi: rotation angle.

LPRectScreen(sx,sv.x shift,y shift,phi,Field)
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rectangular screen.

sX, sy: dimensions of the screen;
x_shift, y_shift: shift from centre;
phi: rotation angle.

LPReflectMultiLayer(P,NO,Ns.N.d,Th,F)

MultiLayer Reflector. Reflection of the field by a multi-layer mirror.
P=0: s-Polarization; P=1: p-Polarization;

NO=refractive index of incident medium (must be real);
Ns=refractive index of substrate;

N= array with (complex) index of the layers;

d= array with the geometrical thicknesses of the layers;

Th= angle of incidence at first layer;

F= the input field

LPSteps(z,N_steps,Refract[N,N],Field)
Propagates 'Field' a distance z in 'N_steps' steps in a medium with a complex refractive
index stored in the NxN matrix 'Refract’. 'N' is the grid dimension.

LPStrehl(Field)
calculates the Strehl ratio. The Strehl ratio is stored in: Field(n_grid,5).

LPSublntensity(intensity,Field)
substitutes an intensity profile into the field. The profile must be stored in the array:
Intens

LPSubPhase(phase.Field)
substitutes a phase profile into the field.The phase profile must be stored in the array:
phase.

LPTilt(tx,ty.Field)
introduces tilt into the field distribution. tx, ty = tilt components in radians.

LPTransmitMultiL.ayer(P,NO,Ns,N,d,Th,F)

MultiLayer Transmission. Transmission of the field through a multi-layer coated
substrate.

P=0: s-Polarization; P=1: p-Polarization;

NO=refractive index of incident medium (must be real);

Ns=refractive index of substrate;

N= array with (complex) index of the layers;

d= array with the geometrical thicknesses of the layers;

Th= angle of incidence at first layer;

F= the input field

LPZernike(n,m,R,A Field)
Introduces arbitrary Zernike aberration into the field.
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n and m are the integer orders, (See Born and Wolf, 6th edition p.465, Pergamon 1993).
R is the radius at which the phase amplitude reaches A (in radians)
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