Prode Properties Test File

for Prode Properties ver. 1.2b

This file may be used to insure that the Mathcad prode.dll file is in the right directory and that the functions are working properly. Prode Properties may be tested independent of Mathcad using the Excel version in the Prode directory. Examples are provided to demonstrate how the functions may be used. The process examples (compressor, nozzles, etc.) were based on the Excel examples included in the Prode Properties installation.

Directions for using this worksheet

The default archive from Prode, def.ppp, will be used as the starting file. This worksheet will write changes to a new archive, test.ppp. This file will be placed in the same directory as def.ppp, but the user may also later archive to other directories.

Operations that set a variable will show a result of 1 if successful or 0 if not. Results that retrieve values will show the retrieved value, or 0 if no value is available. The exceptions to this convention will be noted.

Automatic calculation has been turned off so the new user may read these instructions before starting the computations.

Procedure:

- 1. Calculate the entire worksheet, ctrl-F9
- 2. Select dep.ppp archive when first window appears, and click Open
- 3. When second popup window, the Prode archive, appears, it should show stream 2. Click OK.
- 4. Scroll through the worksheet to check for errors. See "Errors" below.
- 5. If the Prode window pops up, it is allowing you to view a recently created stream. Click OK to close.

Errors:

- Mathcad will show errors in red as usual. Typical errors might be caused by syntax in the argument list, or the function may not be found in the library delivered by Prode, ppp.lib.
- If the result is zero, then the Prode function had an error or could not return a value. Frequently, this may be caused by the lack of a particular phase needed for an operation. For example, solid properties can't be returned when a stream has no solid phase, or when the temperature is above the melting point for a pure compound property.
- Rarely, a ppp.dll error window may appear with "Error accessing component's data archive". This appears to be caused by a lack of data in the chem.dat file for that particular property. If this window appears, it must be closed to proceed with the computations. See also the mc_defErrMsg function for a way to prevent these windows from stopping the calculations. The program is set to prevent these error windows.

File open commands

mc_AFOpen("C:\ProgramData\prode\def.ppp") = I	This command sets the path to the archive file and directory. The path shown is the default set during the Prode Properties installation. This command will affect all subsequent uses of Prode on this computer until the path is changed again by another AFOpen command. Therefore, this command should be used with caution.
mc_AOpen("dummy") = 1	browse for an archive in the default directory

The next two functions do not obey the normal Prode convention regarding the result returned if successful. <u>A result of 0 means these were successful.</u> They must be evaluated (followed by "=") in order for the operation to take place.

$mc_setErrFlag(0) = 0$	set to 0 at start of calc's to clear flag
wopt := 0	
mc_defErrMsg(wopt) = 0	wopt = 0 turns off the Window Dialog messages wopt = 1 turns on the Window Dialog messages

Open Properties window to view edit streams

stream := 2	
$mc_{edS(stream)} = 1$	edit the given stream in the current active archive using the Prode window
$mc_{edSS}("dummy") = \bullet$	open to the first stream (disabled for the test to reduce popups)
Chemical file operations	
mc_getFCNr("dummy") = 58	number of components in data file, should be 1635 or greater. If less,

	below will work.
id := 7732185	CAS number of water (use internet search to find values for compounds)

then you are using the free version of Prode and not all of the routines

compcode is an integer from 1 to number of components in the data file

compcode := mc_CompCID(id) = 21

given id=CAS#, return compcode from database

Note: The above statement shows that the functions may be used to define a variable in addition to merely showing a result.

mc_CompF(compcode) = "H2O"	given a component code, returns component formula string
mc_CompN(compcode) = "WATER"	component name
mc_CompID(compcode) = 7732185	CAS number of component, compare to id above
Note: The units are not returned by the Prode com units are being used are shown later.	mands. Operations that show which
mc_CompMw(compcode) = 18.015	molecular weight
$T_c := mc_CompTc(compcode) \cdot K = 647.096 K$	critical temperature
$T_c = 1.165 \times 10^3 \cdot R$	multiply the function by the current Prode units for the result to use the unit features of Mathcad
mc_CompPc(compcode) = 2.206×10^7	critical pressure
mc_CompVc(compcode) = 3.106×10^{-3}	critical volume
mc_CompAc(compcode) = 0.344	acentric factor
$mc_CompDm(compcode) = 0$	dipole moment
mc_CompRg(compcode) = 6.15×10^{-11}	radius of gyration
mc_CompSol(compcode) = 1.512×10^3	solubility parameter
mc_CompHf (compcode) = -1.342×10^4	heat of formation
mc_CompGf (compcode) = -1.27×10^4	Gibbs energy of formation
$mc_CompSf(compcode) = 333.474$	enthalpy of fusion
mc_CompNb(compcode) = 373.15	normal boiling point
mc_CompMp(compcode) = 273.15	melting point temperature

The following provide non zero values only if the phase of interest is present at the temperature requested.

tgl := 300

temperature for gas/liquids (above freezing for water)

ts := 260	temperature for solids (below freezing)
mc_CompVP(compcode,tgl) = 3.548×10^3	saturation pressure at temp tgl
mc_CompHV(compcode,tgl) = 2.436×10^3	heat of vaporization at tgl
mc_CompLV(compcode,tgl) = 8.562×10^{-4}	liquid viscosity at tgl
mc_CompGV(compcode,tgl) = 9.925×10^{-6}	gas viscosity at tgl
mc_CompLD(compcode,tgl) = 995.476	liquid density at tgl
$mc_CompSD(compcode, ts) = 918.631$	solid density at ts
mc_CompLC(compcode,tgl) = 0.616	liquid thermal conductivity at tgl
$mc_CompGC(compcode, tgl) = 0.019$	gas thermal conductivity at tgl
$mc_CompSC(compcode,ts) = 0$	solid thermal conductivity at ts (appears to be missing for water)
$mc_CompST(compcode,tgl) = 0.072$	surface tension at tgl

integrated changes between two temperatures, t0 and t1 for pure components

t0 := 280 $t1 := 290$	
$mc_CompHG(compcode, t0, t1) = 18.611$	ideal gas enthalpy change
$mc_CompSG(compcode, t0, t1) = 0.065$	ideal gas entropy change
mc_CompHL(compcode, $t0, t1$) = 42.018	ideal liquid enthalpy change
$mc_CompSL(compcode,t0,t1) = 0.147$	ideal liquid entropy change
ts0 := 260 $ts1 := 270$	lower the temperature range < freezing pt
mc_CompHS(compcode,ts0,ts1) = 20.524	ideal solid enthalpy change
$mc_CompSS(compcode, ts0, ts1) = 0.077$	ideal solid entropy change

Units commands

See "Units of Measurement" section in Prode manual for a list of the units and their numerical codes.

UM := 15	pressure is used for an example
n_press := mc_getUMN(UM) = 20	no. of units avail. for UM

$mc_getUMC(UM) = 1$	present units code for UM
mc_getSUMS(UM) = "Pa.a"	present units string for UM
sel := 5	select unit 5
mc_getUMS(UM, sel) = "KPa.a"	units string for (UM, sel)

list all of the units for pressure

i := 1 .. n_press

 $P_units_i := mc_getUMS(UM, i)$

		0
	0	0
	1	"Pa.a"
	2	"Pa.g"
	3	"mbar.a"
	4	"mbar.g"
P_units =	5	"KPa.a"
	6	"KPa.g"
	7	"bar.a"
	8	"bar.g"
	9	"kgf/cmq.a"
	10	"kgf/cmq.g"
	11	"psi.a"
	12	"psi.g"
	13	

 $mc_getP(stream) \cdot Pa = 14.696 \cdot psi$

sel := 11

 $mc_setUMC(UM, sel) = 1$

mc_getSUMS(UM) = "psi.a"

$$mc_getP(stream) \cdot psi = 14.697 \cdot psi$$

multiply by current Prode pressure unit, then request any unit in the result

select a new pressure unit

change to the 11th unit for pressure

show current unit name for UM

now pressure results must be multiplied by psi

 $mc_setUMC(UM, 1) = 1$

reset to original unit for remainder of worksheet

Routines UMCR, UMCS, and UMAU are not fully documented in the Prode manual so they have been left out of the dll.

 $mc_UMRAU(UM) = 1$

removes all added units for (property no.)

Error message flags

mc_ErrMsg("") = "Error accessing component's data archive" last error message, maybe from a previous run		
dum := "dummy"		
errflag := mc_getErrFlag(dum)	0 = no errors, 1 = errors found	
errflag = 1	This flag only works if the Window Dialog messages are turned off. Otherwise, the Dialog messages are themselves the indication of errors. See mc_defErrMsg. Errors that Mathcad detects (i.e. red indication) are not included for this flag.	
	At the time this test file was created, the thermal conductivity of solid water was not available in the database, causing an error and a value of 1 for errflag.	
$mc_setErrFlag(0) = 0$	set to 0 at start of next calc's to clear flag	
$mc_defErrMsg(0) = \bullet$	0 = turns off the Window Dialog messages 1 = turns on the Window Dialog messages	
	This function was demonstrated at start of worksheet. Turning off the Window Dialog messages allows the computations to continue without pausing to close the Dialog window when an error occurs. The error may still be visible if a 0 value is returned where a real number is expected.	

Atmospheric pressure

patm := mc_getPatm("mc") = 1.013×10^5

the pressure should be $1.013 \cdot 10^5$

Base values for enthalpy and entropy

This section is new for this version

The default values for the base temperature, enthalpy, and entropy may be found in the config>settings Prode window. The functions below may be used to change the settings. The settings apply only to the current archive. The settings for the archive are saved when the archive is saved.

Code Procedure

1 = initial values specified by user (values of tref and val) 2 = initial values are enthalpy of formation (or entropy of formation) and temperature 25 C			
If code = 2, the tref and val inputs are ignored.			
code := 1	tref := 298	val := 0	
mc_setHB(code,t	ref, val) = 1		enthalpy references
mc_setSB(code, tr	ref, val) = 1		entropy references

Read/write stream properties

If a write operation exists, it will appear under the read operation, using the value from the read operation. This simplifies the testing process.

The write operations in this section are in blue highlight.	
stream := 1	
phase := 2	the phase position (not the phase type)
cpos := 2	cpos is the component's numerical position in the composition vector for the stream, starting with 1
$mc_{isSDef}(stream) = 1$	given a stream returns TRUE (integer = 1) if stream has been defined, otherwise returns FALSE (0)
name := mc_StrN(stream) = "Test Case 1"	stream name
$mc_putN(stream, name) = 1$	
mc_setOp(stream, 150, patm) = 1	This is an edit operation to lower the temperature so liquid will be present for the functions below.
$t := mc_getT(stream) = 150$	temperature
$mc_putT(stream, t) = 1$	

$p := mc_getP(stream) = 1.013 \times 10^5$	pressure
$mc_putP(stream, p) = 1$	
pnr := mc_getPNr("mc") = 5	returns the maximum number of phases that procedure can detect in the archive for all streams (may include phases at other temperatures)
$mc_StrPt(stream, phase) = 1$	given a stream and phase # in range 1- getPNr() returns the phase type (0=vapor,1=liquid,2=solid)
i := 0 pnr - 1	
$phases_i := mc_StrPts(stream, i + 1)$	given a stream and phase # in range 1- getPNr() returns a ANSI C string with the description of type for detected phase
phases = $\begin{pmatrix} "Vapor" \\ "Liquid" \\ "Liquid" \\ "Not present" \\ "Not present" \end{pmatrix}$	only one liquid phase is present later, the flash routine code will be reset to obtain two liquid phases
$mc_StrLf(stream) = 0.26$	given a stream returns the total liquid fraction (molar basis) in stream
$mc_StrPf(stream, phase) = 0.161$	given a stream and phase phase # in range 1- getPNr() returns the phase fraction
w := mc_getW(stream, phase, cpos) = 0.272	mole fraction of component (cpos #) in a phase
mc_putW(stream, phase, cpos, w) = 1	mole fraction w of component cpos in a phase
rate := mc_getWm(stream) = 1	stream flow rate, mass/time
mc_setWm(stream, rate) = 1	
zi := mc_getZ(stream, cpos) = 0.15	mole fraction of component cpos in total stream
mc putZ(stream, cpos, zi) = 1	

$mc_getCNr(stream) = 3$	number of components in stream
$mc_StrZv(stream) = 0.984$	returns the relevant compressibility factor (gas phase)
$mc_StrMw(stream) = 22.944$	molecular weight of total stream
mc_StrGMw(stream) = 17.563	molecular weight of gas phase
mc_StrLMw(stream) = 38.272	molecular weight of liquid phase
$mc_StrV(stream) = 0.391$	specific volume as sum of specific volumes of all phases

enthalpy

$h := mc_StrH(stream) = -434.413$	total stream enthalpy
$mc_StrGH(stream) = -163.905$	gas phase enthalpy
$mc_StrSGH(stream) = -289.294$	gas specific enthalpy
$mc_StrLH(stream) = -270.508$	liquid enthalpy
$mc_StrSLH(stream) = -624.11$	liquid specific enthalpy
$mc_StrSH(stream) = 0$	solid enthalpy
$mc_StrSSH(stream) = 0$	solid specific enthalpy

entropy

entropy := $mc_StrS(stream) = -2.137$	total stream entropy
$mc_StrGS(stream) = -0.756$	gas phase entropy
$mc_StrSGS(stream) = -1.335$	gas specific entropy
$mc_StrLS(stream) = -1.38$	liquid entropy
$mc_StrSLS(stream) = -3.185$	liquid specific entropy
$mc_StrSS(stream) = 0$	solid entropy
$mc_StrSSS(stream) = 0$	solid specific entropy

heat capacity, mass basis

 $mc_StrGICp(stream) = 1.887$

ideal gas heat capacity

 $mc_StrGCp(stream) = 1.915$

 $mc_StrGCv(stream) = 1.416$

 $mc_StrLCp(stream) = 1.737$

 $mc_StrLCv(stream) = 1.215$

 $mc_StrSCp(stream) = 0$

speed of sound

$mc_StrMSS(stream) = 0$	mixed phase speed of sound HEM model
mc_StrGSS(stream) = 266.864	gas phase
mc_StrLSS(stream) = 1.894×10^3	liquid phase

Joule Thomson coefficient

mc_StrGJT(stream) = 1.528×10^{-5}	
mc_StrLJT(stream) = -3.992×10^{-7}	

compressibility, expansivity

mc_StrGIC(stream) = 1.003×10^{-5}

mc_StrLIC(stream) =
$$5.977 \times 10^{-10}$$

mc_StrGVE(stream) = -6.949×10^{-3}

mc_StrLVE(stream) = -1.522×10^{-3}

density

mc_StrGD(stream) =
$$0 \times 10^{0}$$

mc_StrLD(stream) = 1.113×10^{3}

thermal conductivity

$mc_StrGC(stream) = 0.015$	gas conductivity
mc_StrLC(stream) = 0.285	liquid conductivity

gas constant pressure heat capacity gas constant volume heat capacity liquid constant pressure heat capacity liquid constant volume heat capacity solid constant pressure heat capacity

gas phase liquid phase

gas isothermal compressibility, $\frac{1}{V} \cdot \left(\frac{d}{dP} V \right)$

liquid isothermal compressibility gas volumetric expansivity $\frac{1}{V} \left(\frac{d}{dT} V \right)$

gas volumetric expansivity

gas density

liquid density

viscosity	
mc_StrGV(stream) = 6.261×10^{-6}	gas viscosity
mc_StrLV(stream) = 1.649×10^{-4}	liquid viscosity
surface tension	
$mc_StrST(stream) = 0.034$	liquid/gas
flammability	
mc_StrFML(stream) = 4.993	gas phase lean limit
mc_StrFMH(stream) = 15.082	gas phase rich limit
other stream properties	
mc_StrHC(stream) = 4.332×10^4	gas phase heat of combustion
compcode := mc_getCC(stream,cpo	s) = 2 component number for component copos
mc_putCC(stream, cpos, compcode)	= 1
mc_getMCNr("dummy") = 50	maximum number of components in a stream
interactions This section was changed	ged for this version.
int_pos := 1	the interaction number (i.e. the row the BIP window for the stream)
mc_getMBPNr("dummy") = 250	maximum number of binary pairs ir stream (for all streams)
ci := mc_getCi(stream, int_pos) = 1	component index i in interaction lis
mc_putCi(stream,int_pos,ci) = 1	
$c_i := mc_getC_i(stream.int_pos) = 2$	component index j in interaction lis
cj := mc_getCj(stream, int_pos) = 2 mc_putCj(stream, int_pos, cj) = 1	component index j in interaction lis
<pre>cj := mc_getCj(stream, int_pos) = 2 mc_putCj(stream, int_pos, cj) = 1 model := mc_getMB(stream, int_pos</pre>	component index j in interaction lis = 50 returns model number for interaction # int_pos in given stream

	id := 0	This id is the BIP column (starting with 0 for BIP-1) shown in the PPP window under BIPs for the stream.
	Kji := mc_getBIP(stream, int_pos, id) = 0.08	value of the interaction coefficient
	mc_putBIP(stream, int_pos, id, Kji) = 1	specifies a value for an interaction coefficient
theri	modynamic models for streams This	section was changed for this version.
	stream = 1	
	Kcode := 50	code for SRK standard model package, see manual for other
	mc_setKM(stream,Kcode) = 1	package numbers
	mp codes for functions below	
	 fugacity enthalpy entropy molar volume viscosity 	
	Examples for fugacity and enthalpy models below	r.
	state := 0	vapor state
	mp := 1	fugacity model for stream, state
	fmodel := mc_getMP(stream, mp, state) = 50	retrieve model number
	mc_setMP(stream, mp, fmodel, state) = 1	set model number
	mp := 2	enthalpy model for stream, state
	hmodel := mc_getMP(stream,mp,state) = 50	retrieve model number
	mc setMP(stream, mp, hmodel, state) = 1	set model number

Thermodynamic calculations

stream := 5		use stream 5 for examples below
t = 150	$p = 1.013 \times 10^5$	
state := 1		state (0=vapor, 1=liquid, 2=solid)
phase equilibria		
n := 1	pf := .3	see below
mc_PfPF(stream,p	pf, state, n) = 0	n th equilibrium temp at p, pf (phase fraction), state (0=vapor, 1=liquid, 2=solid)
mc_PfTF(stream,t,	pf, state, n) = 0	n th equil. press at t, pf, state
lf := .2		set liquid fraction
mc_LfPF(stream,p	(16) = 300.674	first equil. temp at liquid fraction, If
mc_LfTF(stream,t,	lf) = 0	first equil. pressure at liquid fraction, If
mc_StrCPnr(stream) = 1	number of critical points found
cpn := 1		selected critical point
mc_StrPc(stream, c	$pn) = 5.242 \times 10^6$	critical pressure for critical point #, cpn
mc_StrCBp(stream)	= 0	cricondenBar pressure
mc_StrCBt(stream)	= 0	cricondenBar temperature
mc_StrCTp(stream)	$= 4.982 \times 10^{6}$	cricondenTherm pressure
mc_StrCTt(stream)	= 457.544	cricondenTherm temperature
mc_StrAc(stream)	= 0.208	acentric factor (mole fraction average)
phase diagram	S	
stream := 5		

lnr := mc_PELNr(stream) lnr = 2 Given a stream calculates the phase diagram and returns the number of equilibrium lines available

line types

line := 2

ltype := mc_PELT(stream, line)

Given a stream and line number, returns the line type:

- 1. bubble line
- 2. dew line
- 3. three phase line
- 4. fractional phase

ltype = 2

line properties

lprop := mc_PELP(stream, line)

Given a stream and line, returns the line properties:

- 1. vapor-liquid
- 2. vapor-liquid-liquid
- 3. vapor-solid
- 4. liquid-solid
- 5. fractional phase

lprop = 1

equilibrium lines

The prode.dll has assumed a maximum number of points of 50 for the equilibrium lines. This dimension cannot be changed dynamically for the variables passed to and from Mathcad. Therefore, the mc_PELine routine leaves out the maxpt variable that is shown in the Prode corresponding routine.

The mc_PELine function (see the first line in the program below) produces a matrix result. Although this matrix can be used "as is" the Mathcad program, "PELine" below calls mc_PELine and splits the matrix into the separate variables.

 $PELine(stream, line) := M \leftarrow mc_PELine(stream, line)$ $npts \leftarrow M_{0,2}$ $T \leftarrow submatrix(M,0, npts - 1, 0, 0)$ $P \leftarrow submatrix(M,0, npts - 1, 1, 1)$ (T P npts)

(T1 P1 npts1) := PELine(stream, line)

The output is shown below.

npts1 = 33

Given stream and equilibrium line number, the temperature and pressure vectors and the total number of points are computed and returned.

		0		
	0	311.885		0
	1	320.94		1
	2	325.94		2
	3	330.94		3
	4	335.94		4
	5	340.94		5
1 =	6	345.94	P1 =	6
	7	350.94		7
	8	355.94		8
	9	360.94		9
	10	365.94		10
	11	370.94		11
	12	375.94		12
	13			13

phase fraction lines

stream := 5

state := 0

fraction := .5

 $\begin{aligned} \text{PFLine(stream, state, fraction)} &\coloneqq & M \leftarrow \text{mc_PFLine(stream, state, fraction)} \\ & \text{npts} \leftarrow M_{0,2} \\ & T \leftarrow \text{submatrix}(M, 0, \text{npts} - 1, 0, 0) \\ & P \leftarrow \text{submatrix}(M, 0, \text{npts} - 1, 1, 1) \\ & (T \ P \ \text{npts}) \end{aligned}$

(Tf Pf nf) := PFLine(stream, state, fraction)

nf = 37

Given stream, state, and fraction of that state, computes the temperature and pressure vectors along that phase fraction, plus the number of points on the curve.

		0			0
	0	272.895		0	1.013.1
	1	277.895		1	1.21.1
	2	282.895		2	1.436.10
	3	287.895		3	1.693.10
	4	292.895		4	1.985.10
	5	297.895		5	2.313·1(
Tf =	6	302.895	Pf =	6	2.683·10
	7	307.895		7	3.096.10
	8	312.895		8	3.556·10
	9	317.895		9	4.066.10
	10	322.895		10	4.63.10
	11	327.895		11	5.251·1(
	12	332.895		12	5.933·10
	13			13	

The Mathcad program, "PhaseEnv" below obtains all of the equilibrium curves which can then be plotted.

PhaseEnv(stream) :=
$$\begin{cases} \ln \epsilon \leftarrow mc_{PELNr(stream)} \\ \text{for line} \in 1.. \ln r \\ \left(t^{\langle \text{line}-1 \rangle} p^{\langle \text{line}-1 \rangle} n_{\text{line}-1} \right) \leftarrow \text{PELine(stream, line)} \\ \text{ltype}_{\text{line}-1} \leftarrow mc_{PELT}(\text{stream, line}) \\ \text{lprop}_{\text{line}-1} \leftarrow mc_{PELP}(\text{stream, line}) \\ \text{(t p lnr n ltype lprop)} \end{cases}$$

stream := 5

(Tj Pj lnr nc type prop) := PhaseEnv(stream)

$$\ln r = 2$$

$$type = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad nc = \begin{pmatrix} 43 \\ 33 \end{pmatrix}$$

As shown in the nc vector, the lines may have different number of points. In order to prevent curves returning to the origin, extract the data from Tj and Pj.

T0 := submatrix
$$(Tj, 0, nc_0 - 1, 0, 0)$$
P0 := submatrix $(Pj, 0, nc_0 - 1, 0, 0)$ T1 := submatrix $(Tj, 0, nc_1 - 1, 1, 1)$ P1 := submatrix $(Pj, 0, nc_1 - 1, 1, 1)$

The legend labels in the above plot were input manually supplied based on the values of the "type" results. Also, the number of curves is determined manually using Inr as guidance. Some streams have more equilibrium curves due to multiple liquid and/or solids.

The PELine, PFLine, and PhaseEnv programs may be copied into or referenced by other programs.

hydrates

hydmodel := 1	thyd := 260	
str_hyd := 2		stream for hydrate function below
hydmodel =		

1 = assume free water present, this option produces conservative but safe values

2 = calculate amount of water in liquid phase

3 = solve as multiphase equilibria, solve phase equilibria including solids as ice

Since water is not present in the stream chosen for testing, the 2 and 3 hydmodels will return 0.

phyd := mc_HPFORM(str_hyd,thyd,hydmodel) = 1.821×10^6 returns the pressure that hydrates form at temperature = thyd

The HTFORM Prode function is not available in the Basic version, but the HPFORM function should suffice.

flashes

stream = 5	
$mc_setSOp(stream) = 1$	flash at standard conditions
et := 0	estimated temperature set to 0 for automatic
ep := 0	estimated pressure set to 0 for automatic
mc_setOp(stream, 150, patm) = 1	set new operating conditions and flash
$t := mc_getT(stream) = 150$	temperature
$p := mc_getP(stream) = 1.013 \times 10^5$	pressure
$h := mc_StrH(stream) = -697.466$	enthalpy obtained above
entropy := mc_StrS(stream) = -2.866	entropy obtained above
sv := mc_StrV(stream) = 1.405×10^{-3}	volume obtained above
find temperature	
$mc_VPF(stream, p, sv, et) = 150$	volume-pressure flash, et=temp guess
$mc_HPF(stream, p, h, et) = 0$	enthalpy-pressure flash, et=temp quess
$mc_SPF(stream, p, entropy, et) = 0$	entropy-pressure flash, et=temp guess
find pressure	
$mc_VTF(stream, t, sv, ep) = 0$	volume-temp flash, ep=press guess
$mc_HTF(stream, t, h, ep) = 0$	enthalpy-temp flash, ep=press guess
$mc_STF(stream, t, entropy, ep) = 0$	entropy-temp flash, ep=press guess

The flashes that determine pressure have some difficulty converging for multiphase (liquids and solids) problems. Select another flash routine and iterate if needed.

Additional flashes for mixing and dividing streams are found at this section

Extended methods for accessing stream properties

These functions allow simultaneous setting of temperature and pressure followed by an isothermal flash before the desired property is returned. These methods should be used with care because of the change in the stream conditions.

stream := 2	
mc_EStrGMw(stream, t, p) = 16.047	gas molecular weight
$mc_EStrLMw(stream, t, p) = 55.298$	liquid molecular weight
mc_EStrLf (stream, t, p) = 9.572×10^{-4}	mole fraction of liquid
phase := 1	position of phase, not the state code. positions are usually vapor=1, liquid=2, solid=3 but extra liquid and solid phases may be present
$mc_EStrPf(stream, phase, t, p) = 0.999$	molar phase fraction of phase
$mc_EStrZv(stream, t, p) = 0.984$	gas (vapor) compressibility factor
$mc_EStrH(stream, t, p) = -317.84$	total enthalpy
$mc_EStrV(stream, t, p) = 0.752$	total specific volume
$mc_EStrGCp(stream,t,p) = 2.103$	gas constant pressure heat capacity
$mc_EStrGCv(stream,t,p) = 1.559$	gas constant volume heat capacity
$mc_EStrLCp(stream, t, p) = 1.709$	liquid constant pressure heat capacity
$mc_EStrLCv(stream, t, p) = 1.399$	liquid constant volume heat capacity
mc_EStrGIC(stream, t, p) = 1.003×10^{-5}	gas isothermal compressibility
mc_EStrLIC(stream,t,p) = 5.211×10^{-10}	liquid isothermal compressibility
$mc_EStrMSS(stream,t,p) = 0$	mixture speed of sound
$mc_EStrGSS(stream, t, p) = 0$	gas speed of sound
mc_EStrLSS(stream,t,p) = 3.325×10^3	liquid speed of sound

mc_EStrGJT(stream,t,p) = 1.466×10^{-5}	gas Joule Thomson coefficient
mc_EStrLJT(stream,t,p) = -6.958×10^{-7}	liquid Joule Thomson coefficient
mc_EStrGVE(stream,t,p) = -6.939×10^{-3}	gas volumetric expansivity coefficient
mc_EStrLVE(stream, t, p) = -8.86×10^{-4}	liquid volumetric expansivity
mc_EStrHC(stream, t, p) = 5.001×10^4	heat of combustion
$mc_EStrFML(stream,t,p) = 4.999$	lean flammability limit of gas
$mc_EStrFMH(stream,t,p) = 14.999$	rich flammability limit of gas
$mc_EStrS(stream,t,p) = -1.466$	total entropy
$mc_EStrGD(stream, t, p) = 1.325$	gas density
$mc_EStrLD(stream,t,p) = 729.12$	liquid density
$mc_EStrGC(stream,t,p) = 0.016$	gas thermal conductivity
$mc_EStrLC(stream, t, p) = 0.175$	liquid thermal conductivity
mc_EStrGV(stream,t,p) = 6.028×10^{-6}	gas viscosity
mc_EStrLV(stream,t,p) = 1.245×10^{-3}	liquid viscosity
$mc_EStrST(stream, t, p) = 0.029$	surface tension

Fugacity and derivatives This section was changed for this version.

The operations below behave like subroutines rather than functions because they return more than one result. The Mathcad system imposes some restrictions on function input and output so the normal C++ methods of passing variables is not possible. These restrictions are needed to enforce the "non code" look of the Mathcad interface. As a result of these restrictions, the functions below have slightly different argument lists than found in Prode and all of the results are returned in a single matrix. Mathcad routines are then provided to split these results into the appropriate variables.

The prode.dll has assumed a maximum number of components of 50 for all vector and matrix routines. This dimension cannot be changed dynamically for the variables passed to and from Mathcad. For greater number of components, prode.dll must be rebuilt. The constant "maxnc" in the source code for the routines in this section must be changed to the higher number.

stream := 1

NC := mc_getCNr(stream)

These variables were defined above.

 $p = 1.013 \times 10^5$

t = 150

 $mc_setOp(stream, t, p) = 1$

i := 0..NC - 1

phase := 2

 $w_i := mc_getW(stream, phase, i + 1)$

$$w = \begin{pmatrix} 6.329 \times 10^{-3} \\ 0.272 \\ 0.722 \end{pmatrix}$$

state := 1

The liquid state is being used.

New in version 1.2b: The fugacity, H, S, and V functions and their derivatives previously included the stream number as the first argument. Now the first argument is a "process code". The code is set using the mc_DPinit function which also loads the stream information into active memory. The stream (process) stays loaded, making execution of StrFv and similar routines faster. This is especially useful if the routines are repeatedly called by a program loop.

process := 1

 $mc_DPinit(process, stream) = 1$

fugacity vector

 $fg := mc_StrFv(process, state, t, p, w, NC) \cdot Pa$

$$fg = \begin{pmatrix} 1.488 \times 10^7 \\ 1.788 \times 10^4 \\ 1.056 \times 10^3 \end{pmatrix} Pa$$

This routine returns the fugacity vector alone.

Up to 5 processes may be defined in

the base Prode version. Processes may be redefined with new streams.

The Prode routines define the "fugacity" variable as the fugacity coefficient times the

 $fugacity_i := fg_i \cdot w_i$

fugacity =
$$\begin{pmatrix} 9.416 \times 10^4 \\ 4.86 \times 10^3 \\ 762.147 \end{pmatrix}$$
 Pa

total pressure. Thus, fugacity is obtained by the equation on the left.

fugacity vector plus derivatives wrt T, P, w

$$\begin{aligned} \text{StrFvd}(\text{process}, \text{state}, t, p, w, \text{NC}) &\coloneqq & \mathsf{M} \leftarrow \mathsf{mc}_{\mathsf{StrFvd}}(\text{process}, \text{state}, t, p, w, \text{NC}) \\ & \text{"separate the results into vectors and a matrix"} \\ & \text{fg} \leftarrow \text{submatrix}(\mathbf{M}, 0, \text{NC} - 1, 0, 0) \\ & \text{dfgt} \leftarrow \text{submatrix}(\mathbf{M}, 0, \text{NC} - 1, 1, 1) \\ & \text{dfgp} \leftarrow \text{submatrix}(\mathbf{M}, 0, \text{NC} - 1, 2, 2) \\ & \text{dfgw} \leftarrow \text{submatrix}(\mathbf{M}, 0, \text{NC} - 1, 3, 3 + \text{NC} - 1) \\ & (\text{fg} \ \text{dfgp} \ \text{dfgp} \ \text{dfgw}) \end{aligned}$$

Add the default Prode units as needed.

$$fg \cdot Pa = \begin{pmatrix} 1.488 \times 10^{7} \\ 1.788 \times 10^{4} \\ 1.056 \times 10^{3} \end{pmatrix} Pa \qquad dfgt \cdot \frac{Pa}{K} = \begin{pmatrix} 2.686 \times 10^{5} \\ 1.627 \times 10^{3} \\ 115.318 \end{pmatrix} \cdot \frac{Pa}{K} \qquad dfgp = \begin{pmatrix} 2.686 \times 10^{5} \\ 1.627 \times 10^{3} \\ 115.318 \end{pmatrix}$$
$$dfgw \cdot Pa = \begin{pmatrix} -2.139 \times 10^{8} & -1.533 \times 10^{8} & -1.202 \times 10^{8} \\ -6.41 \times 10^{4} & -7.652 \times 10^{4} & -2.018 \times 10^{4} \\ 1.557 \times 10^{3} & 1.796 \times 10^{3} & 523.217 \end{pmatrix} Pa$$

Other stream state variables and their derivatives

This section was changed for this version.

Functions were provided above (eg. mc_StrH) to obtain the enthalpy (H), entropy(S), and molar volume (V) of a stream. The next routine allows the operating conditions (t, p, w) to be specified to values other than those in the stream data file. The user selects which variable, H, S, or V, is desired, using a string variable with the corresponding variable initial. The program calls the appropriate mc_xxx function and then separates the variables from the output matrix.

$$\begin{split} StrXvd(X, process, state, t, p, w, NC) &:= & M \leftarrow mc_StrHvd(process, state, t, p, w, NC) & \text{if } X = "H" \\ & M \leftarrow mc_StrSvd(process, state, t, p, w, NC) & \text{if } X = "S" \\ & M \leftarrow mc_StrVvd(process, state, t, p, w, NC) & \text{if } X = "V" \\ & x \leftarrow M^{\langle 0 \rangle} \\ & dxt \leftarrow M^{\langle 1 \rangle} \\ & dxp \leftarrow M^{\langle 3 \rangle} \\ & dxw \leftarrow submatrix(M, 0, 0, 3, NC + 2) \\ & (x \ dxt \ dxp \ dxw) \end{split}$$

KJ := 1000·J

Kmol := 1000·mol define new units for Mathcad

(H dHt dHp dHw) := StrXvd("H", process, state, t, p, w, NC)

$$\mathbf{H} \cdot \frac{\mathbf{KJ}}{\mathbf{Kmol}} = \left(-2.419 \times 10^4\right) \cdot \frac{\mathbf{KJ}}{\mathbf{Kmol}}$$

the default Prode units have been applied to the results

$$dHt \cdot \frac{\frac{KJ}{Kmol}}{K} = (65.204) \cdot \frac{KJ}{Kmol \cdot K}$$

$$dHp \cdot \frac{\frac{KJ}{Kmol}}{Pa} = \left(-8.027 \times 10^3\right) \cdot \frac{KJ}{Kmol \cdot Pa}$$

$$dHw \cdot \frac{KJ}{Kmol} = (-8.027 \times 10^{3} -2.153 \times 10^{4} -2.533 \times 10^{4}) \cdot \frac{KJ}{Kmol}$$

(S dSt dSp dSw) := StrXvd("S", process, state, t, p, w, NC)

$$S \cdot \frac{KJ}{Kmol \cdot K} = (-121.246) \cdot \frac{KJ}{Kmol \cdot K}$$

$$dSt \cdot \frac{KJ}{Kmol \cdot K^2} = (0.433) \cdot \frac{KJ}{Kmol \cdot K^2}$$

$$dSp \cdot \frac{KJ}{Kmol \cdot K \cdot Pa} = (-70.635) \cdot \frac{KJ}{Kmol \cdot K \cdot Pa}$$

$$dSw \cdot \frac{KJ}{Kmol \cdot K} = (-70.635 - 105.28 - 104.679) \cdot \frac{KJ}{Kmol \cdot K}$$

(V dVt dVp dVw) := StrXvd("V", process, state, t, p, w, NC)

$$V \cdot \frac{m^3}{mol} = (0.034) \frac{m^3}{mol}$$
$$dVt \cdot \frac{m^3}{mol \cdot K} = (4.845 \times 10^{-5}) \frac{m^3}{mol \cdot K}$$
$$dVp \cdot \frac{m^3}{mol \cdot Pa} = (0.073) \cdot \frac{m^3}{mol \cdot Pa}$$

$$dVw \cdot \frac{m}{mol} = (0.073 \ 0.069 \ 0.068) \frac{m}{mol}$$

Operations to set/retrieve the options needed for equation of state models and flash routine phases

See the Prode manual (see paragraph "Codes used in Prode library") and also open the Prode drop menus for the model to view the description of the options set by the OM code variable. The user will probably find it easier to set the options using the Prode window.

All even code values mean that only single liquid phases are allowed in the flash routines. For multiple liquids, the code value must be odd.

stream := 1	
option := mc_getOM(stream) = 545	current option set This should = 552 for stream 1 in the def.ppp archive. With this option value, only L-V flashes will result.
$mc_setOM(stream, option + 1) = 1$	This changes the flashes of "stream" to multiple liquids.
$mc_setOp(stream, t, p) = 1$	redo the flash
i := 0 pnr – 1	given a stream and phase # in range 1- getPNr() returns the phase type (0=vapor,1=liquid,2=solid)
phases _i := mc_StrPts(stream, i + 1)	given a stream and phase # in range 1- getPNr() returns a ANSI C string with the description of type for detected phase

```
      mc_setOM(stream, option) = 1
      "Vapor"
      "Solid"

      Previously, only one liquid was present
      "Not present"

      mc_setOM(stream, option) = 1
      reset the code to single liquids
```

Initializing a stream This section was changed for this version.

The example will create a stream with water and methanol. The component numbers in the Prode databank can change with updates, so always use CAS numbers when initializing by program instead of manually using the Prode window.

methanol_id := 67561	CAS number of methanol
methanol_code := mc_CompCID(methanol_id) = 24	
water_id := 7732185	CAS number of water
water_code := mc_CompCID(water_id) = 21	
stream := 11	
mc_initS(stream) = 1	initialize a new stream
model := 50 SRK standard	see Prode manual for model codes
$mc_setKM(stream, model) = 1$	set property model package
$mc_putZ(stream, 1, .5) = 1$	set total stream mole fractions
$mc_putZ(stream, 2, .5) = 1$	
mc_putCC(stream, 1, methanol_code) = 1	define components
mc_putCC(stream,2,water_code) = 1	
mc_setS(stream) = 1	validate the stream
$mc_loadSB(stream) = 1$	load BIP coefficients
$mc_setWm(stream, 1.3) = 1$	set mass flow rate
temp := 300 pres := patm	
$mc_setOp(stream, temp, pres) = 1$	set temp and pres and flash
$mc_edS(stream) = 0$	view the stream then press OK

Other stream operations

stream $2 := 1$	
stream1 := 10	
mc_StrCopy(stream1, stream2) = 1	copy stream2 to stream1 (note the order!)
$et := mc_getT(stream2) = 150$	
$mc_getT(stream1) = 150$	
mc_MixF(stream1,stream2,et) = 1	flash at lower stream press, et=temp guess for mixed stream. The sum of the streams replaces stream1. A new stream is NOT created.
$mc_getT(stream1) = 329.55$	mixed stream temperature
stream2 := 12	the new stream to be created by Divi
wdiv := .7	
mc_Divi(stream1, stream2, wdiv) = 1	Given one stream (stream1) and a flowrate fraction (0-1) performs a divider operation so that stream 1 is shifted into two streams (stream1, stream2) of the same composition, temperature and pressure, flowrate fractions are subdivided as specified by wdiv (stream2 = wdiv, stream1 = 1- wdiv)
	Only one new stream is created, NOT two. The starting stream gets overwritten.
phase separation	
stream1 := 5	
stream2 := 13 phase := 1	the new stream to be created by PSep phase number to separate. NOT the
r	phase type

<pre>mc_PSep(stream1,stream2,phase) = 1 gasstream := 14</pre>	Given a stream (stream1) performs an isothermal flash to simulate a phase separator and returns the specified phase number (not phase type) to stream2.
mc_GSep(stream1,gasstream) = 1	Given a stream (stream1) performs an isothermal flash to simulate a phase separator and returns the gas phase to gasstream
liqstream := 15	
mc_LSep(stream1,liqstream) = 1	Given a stream (stream1) performs an isothermal flash to simulate a phase separator and returns the liq phase(s) to liqstream

Polytropic compressor/expander

rate compressor efficiency

$pin := 10^{6}$	pressure in Pa	
pout := $2 \cdot 10^6$		
tin := 300	temperature in K	
tout := 370		
model := 2		for a rating, model may be the following:
stream := 2		2 = Huntington method 4 = Paron method
mc_setOp(stream	n, tin, pin) = 1	set the inlet stream conditions
mc_PSPF(stream, pout, model, tout) = 0.743		efficiency rating and "stream" in archive now contains the outlet
design mode	1	conditions
eff := .75		polytropic efficiency given
model := 1		for a design, model may be the following: 1 = Huntington 3 = Paron
mc_setOp(stream	n, tin, pin) = 1	reset the inlet stream conditions
mc_PSPF(stream	, pout, model, eff) = 369.276	outlet temperature and "stream" now contains the outlet conditions

Isentropic expansion, nozzles

stream := 5	
tin := 340 pin := $2 \cdot 10^6$	
$mc_setWm(stream, 1.23) = 1$	
$mc_setOp(stream, tin, pin) = 1$	set stream conditions
model := 2	model options:: 1 = homogeneous, equilibrium 2 = homogeneous, non equilibrium 3 = homogeneous, non equilibrium ? 4 = nonhomogeneous, non equilibrium
pout := patm	
parameter := .75	Prode manual does not explain
mc_ISPF(stream, pout, model, parameter) = 0	calculated orifice area, m ²
mc_getErrFlag(" ") = 1	

Pipe flow

The PIPE function is only available for users with an extended Prode license.

model := 1
stream := 1
diam :=
$$\frac{1 \cdot in}{m} = 0.025$$

rough := .00045
length := $\frac{100 \cdot km}{m} = 1 \times 10^5$
dHeight := 0
dHeat := 0
mc_PIPE(stream_model_diam_

 $mc_PIPE(stream, model, diam, rough, length, dHeight, dHeat) = 0$

The result above will be 0 if the user has a Basic Prode license or 1 for an Extended license. The pressure and phase changes are made in the stream databank.

Parameters :

stream (int) inlet stream model (int) model for fluid flow and phase equilibria (see below) diam (double) pipe internal diameter rough (double) parameter defining relative pipe roughness length (double) length of this segment dHeight (double) height difference (inlet, outlet) dHeat (double) height difference (inlet, outlet) dHeat (double) heat added, removed **Codes for models** 1 Beggs & Brill / Hazen-Williams / AGA additional models on request to Prode

File save

 $mc_AFSave("C:ProgramData|prode|test.ppp") = 0$ save modifications to a new archive