
Prode Properties Test File
for Prode Properties ver. 1.2b

This file may be used to insure that the Mathcad prode.dll file is in the right directory and that the
functions are working properly. Prode Properties may be tested independent of Mathcad using the
Excel version in the Prode directory. Examples are provided to demonstrate how the functions
may be used. The process examples (compressor, nozzles, etc.) were based on the Excel
examples included in the Prode Properties installation.

Directions for using this worksheet
The default archive from Prode, def.ppp, will be used as the starting file. This worksheet will write
changes to a new archive, test.ppp. This file will be placed in the same directory as def.ppp, but
the user may also later archive to other directories.

Operations that set a variable will show a result of 1 if successful or 0 if not. Results that retrieve
values will show the retrieved value, or 0 if no value is available. The exceptions to this convention
will be noted.

Automatic calculation has been turned off so the new user may read these instructions before
starting the computations.

Procedure:
Calculate the entire worksheet, ctrl-F91.
Select dep.ppp archive when first window appears, and click Open2.
When second popup window, the Prode archive, appears, it should show stream 2. Click OK. 3.
Scroll through the worksheet to check for errors. See "Errors" below.4.
If the Prode window pops up, it is allowing you to view a recently created stream. Click OK to5.
close.

Errors:
Mathcad will show errors in red as usual. Typical errors might be caused by syntax in the•
argument list, or the function may not be found in the library delivered by Prode, ppp.lib.
If the result is zero, then the Prode function had an error or could not return a value. Frequently,•
this may be caused by the lack of a particular phase needed for an operation. For example,
solid properties can't be returned when a stream has no solid phase, or when the temperature
is above the melting point for a pure compound property.
Rarely, a ppp.dll error window may appear with "Error accessing component's data archive".•
This appears to be caused by a lack of data in the chem.dat file for that particular property. If
this window appears, it must be closed to proceed with the computations. See also the
mc_defErrMsg function for a way to prevent these windows from stopping the calculations.
The program is set to prevent these error windows.

File open commands

mc_AFOpen "C:\ProgramData\prode\def.ppp"() = This command sets the path to the
archive file and directory. The path
shown is the default set during the
Prode Properties installation. This
command will affect all subsequent
uses of Prode on this computer until
the path is changed again by another
AFOpen command. Therefore, this
command should be used with
caution.

disabled

mc_AOpen "dummy"() 1= browse for an archive in the default
directory

The next two functions do not obey the normal Prode convention regarding the result returned if
successful. A result of 0 means these were successful. They must be evaluated (followed by "=")
in order for the operation to take place.

mc_setErrFlag 0() 0= set to 0 at start of calc's to clear flag

wopt 0:=

mc_defErrMsg wopt() 0= wopt = 0 turns off the Window Dialog
messages
wopt = 1 turns on the Window Dialog
messages

Open Properties window to view edit streams
stream 2:=

mc_edS stream() 1= edit the given stream in the current
active archive using the Prode
window

mc_edSS "dummy"() = open to the first stream (disabled for
the test to reduce popups)

Chemical file operations

mc_getFCNr "dummy"() 58= number of components in data file,
should be 1635 or greater. If less,
then you are using the free version of
Prode and not all of the routines
below will work.

id 7732185:= CAS number of water (use internet
search to find values for compounds)

compcode is an integer from 1 to number of components in the data file

=:=

compcode mc_CompCID id() 21=:= given id=CAS#, return compcode
from database

Note: The above statement shows that the functions may be used to define a variable in
addition to merely showing a result.

mc_CompF compcode() "H2O"= given a component code, returns
component formula string

mc_CompN compcode() "WATER"= component name

mc_CompID compcode() 7732185= CAS number of component, compare
to id above

Note: The units are not returned by the Prode commands. Operations that show which
units are being used are shown later.

mc_CompMw compcode() 18.015= molecular weight

Tc mc_CompTc compcode() K⋅ 647.096K=:= critical temperature

multiply the function by the current
Prode units for the result to use the
unit features of Mathcad

Tc 1.165 10
3× R⋅=

mc_CompPc compcode() 2.206 10
7×= critical pressure

mc_CompVc compcode() 3.106 10
3−×= critical volume

mc_CompAc compcode() 0.344= acentric factor

mc_CompDm compcode() 0= dipole moment

mc_CompRg compcode() 6.15 10
11−×= radius of gyration

mc_CompSol compcode() 1.512 10
3×= solubility parameter

mc_CompHf compcode() 1.342− 10
4×= heat of formation

mc_CompGf compcode() 1.27− 10
4×= Gibbs energy of formation

mc_CompSf compcode() 333.474= enthalpy of fusion

mc_CompNb compcode() 373.15= normal boiling point

mc_CompMp compcode() 273.15= melting point temperature

The following provide non zero values only if the phase of interest is present at the
temperature requested.

tgl 300:= temperature for gas/liquids (above
freezing for water)

:=

ts 260:= temperature for solids (below
freezing)

mc_CompVP compcode tgl, () 3.548 10
3×= saturation pressure at temp tgl

mc_CompHV compcode tgl, () 2.436 10
3×= heat of vaporization at tgl

mc_CompLV compcode tgl, () 8.562 10
4−×= liquid viscosity at tgl

mc_CompGV compcode tgl, () 9.925 10
6−×= gas viscosity at tgl

mc_CompLD compcode tgl, () 995.476= liquid density at tgl

mc_CompSD compcode ts, () 918.631= solid density at ts

mc_CompLC compcode tgl, () 0.616= liquid thermal conductivity at tgl

mc_CompGC compcode tgl, () 0.019= gas thermal conductivity at tgl

mc_CompSC compcode ts, () 0= solid thermal conductivity at ts
(appears to be missing for water)

mc_CompST compcode tgl, () 0.072= surface tension at tgl

integrated changes between two temperatures, t0 and t1 for pure
components

t0 280:= t1 290:=

mc_CompHG compcode t0, t1, () 18.611= ideal gas enthalpy change

mc_CompSG compcode t0, t1, () 0.065= ideal gas entropy change

mc_CompHL compcode t0, t1, () 42.018= ideal liquid enthalpy change

mc_CompSL compcode t0, t1, () 0.147= ideal liquid entropy change

ts0 260:= ts1 270:= lower the temperature range <
freezing pt

mc_CompHS compcode ts0, ts1, () 20.524= ideal solid enthalpy change

mc_CompSS compcode ts0, ts1, () 0.077= ideal solid entropy change

Units commands
See "Units of Measurement" section in Prode manual for a list of the units and their numerical
codes.

UM 15:= pressure is used for an example

n_press mc_getUMN UM() 20=:= no. of units avail. for UM

mc_getUMC UM() 1= present units code for UM

mc_getSUMS UM() "Pa.a"= present units string for UM

sel 5:= select unit 5

mc_getUMS UM sel, () "KPa.a"= units string for (UM, sel)

list all of the units for pressure

i 1 n_press..:=

P_unitsi mc_getUMS UM i, ():=

P_units

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0

"Pa.a"

"Pa.g"

"mbar.a"

"mbar.g"

"KPa.a"

"KPa.g"

"bar.a"

"bar.g"

"kgf/cmq.a"

"kgf/cmq.g"

"psi.a"

"psi.g"

...

=

mc_getP stream() Pa⋅ 14.696 psi⋅= multiply by current Prode pressure
unit, then request any unit in the result

sel 11:= select a new pressure unit

mc_setUMC UM sel, () 1= change to the 11th unit for pressure

mc_getSUMS UM() "psi.a"= show current unit name for UM

mc_getP stream() psi⋅ 14.697 psi⋅= now pressure results must be
multiplied by psi

mc_setUMC UM 1, () 1= reset to original unit for remainder of
worksheet

Routines UMCR, UMCS, and UMAU are not fully documented in the Prode manual so they
have been left out of the dll.

mc_UMRAU UM() 1= removes all added units for (property
no.)

Error message flags

mc_ErrMsg ""() "Error accessing component's data archive"= last error message, maybe
from a previous run

dum "dummy":=

errflag mc_getErrFlag dum():= 0 = no errors, 1 = errors found

errflag 1= This flag only works if the Window
Dialog messages are turned off.
Otherwise, the
Dialog messages are themselves
the indication of errors. See
mc_defErrMsg. Errors that Mathcad
detects (i.e. red indication) are not
included for this flag.

At the time this test file was created,
the thermal conductivity of solid water
was not available in the database,
causing an error and a value of 1 for
errflag.

mc_setErrFlag 0() 0= set to 0 at start of next calc's to clear
flag

mc_defErrMsg 0()= 0 = turns off the Window Dialog
messages
1 = turns on the Window Dialog
messages

This function was demonstrated at
start of worksheet. Turning off the
Window Dialog messages allows the
computations to continue without
pausing to close the Dialog window
when an error occurs. The error may
still be visible if a 0 value is returned
where a real number is expected.

Atmospheric pressure

patm mc_getPatm "mc"() 1.013 10
5×=:= the pressure should be 1.013 10

5⋅

This section is new for this versionBase values for enthalpy and entropy
The default values for the base temperature, enthalpy, and entropy may be found in the
config>settings Prode window. The functions below may be used to change the settings. The
settings apply only to the current archive. The settings for the archive are saved when the archive is
saved.

Code Procedure
1 = initial values specified by user (values of tref and val)
2 = initial values are enthalpy of formation (or entropy of formation) and temperature 25 C

If code = 2, the tref and val inputs are ignored.

code 1:= tref 298:= val 0:=

mc_setHB code tref, val, () 1= enthalpy references

mc_setSB code tref, val, () 1= entropy references

Read/write stream properties
If a write operation exists, it will appear under the read operation, using the value from the read
operation. This simplifies the testing process.

The write operations in this section are in blue highlight.

stream 1:=

phase 2:= the phase position (not the phase
type)

cpos 2:= cpos is the component's numerical
position in the composition vector for
the stream, starting with 1

mc_isSDef stream() 1= given a stream returns TRUE (integer =
1) if stream has been defined,
otherwise returns FALSE (0)

name mc_StrN stream() "Test Case 1"=:= stream name

mc_putN stream name, () 1=

mc_setOp stream 150, patm, () 1= This is an edit operation to lower the
temperature so liquid will be present
for the functions below.

t mc_getT stream() 150=:= temperature

mc_putT stream t, () 1=

p mc_getP stream() 1.013 10
5×=:= pressure

mc_putP stream p, () 1=

pnr mc_getPNr "mc"() 5=:= returns the maximum number of
phases that procedure can detect in the
archive for all streams (may include
phases at other temperatures)

mc_StrPt stream phase, () 1= given a stream and phase # in range 1-
getPNr() returns the phase type
(0=vapor,1=liquid,2=solid)

i 0 pnr 1−..:=

phasesi mc_StrPts stream i 1+, ():= given a stream and phase # in range 1-
getPNr() returns a ANSI C string with
the description of type for detected
phase

phases

"Vapor"

"Liquid"

"Liquid"

"Not present"

"Not present"

= only one liquid phase is present
later, the flash routine code will be
reset to obtain two liquid phases

mc_StrLf stream() 0.26= given a stream returns the total liquid
fraction (molar basis) in stream

mc_StrPf stream phase, () 0.161= given a stream and phase phase # in
range 1- getPNr() returns the phase
fraction

w mc_getW stream phase, cpos, () 0.272=:= mole fraction of component (cpos #)
in a phase

mc_putW stream phase, cpos, w, () 1= mole fraction w of component cpos in
a phase

rate mc_getWm stream() 1=:= stream flow rate, mass/time

mc_setWm stream rate, () 1=

zi mc_getZ stream cpos, () 0.15=:= mole fraction of component cpos in
total stream

mc_putZ stream cpos, zi, () 1=

mc_getCNr stream() 3= number of components in stream

mc_StrZv stream() 0.984= returns the relevant compressibility
factor (gas phase)

mc_StrMw stream() 22.944= molecular weight of total stream

mc_StrGMw stream() 17.563= molecular weight of gas phase

mc_StrLMw stream() 38.272= molecular weight of liquid phase

mc_StrV stream() 0.391= specific volume as sum of specific
volumes of all phases

enthalpy

h mc_StrH stream() 434.413−=:= total stream enthalpy

mc_StrGH stream() 163.905−= gas phase enthalpy

mc_StrSGH stream() 289.294−= gas specific enthalpy

mc_StrLH stream() 270.508−= liquid enthalpy

mc_StrSLH stream() 624.11−= liquid specific enthalpy

mc_StrSH stream() 0= solid enthalpy

mc_StrSSH stream() 0= solid specific enthalpy

entropy

entropy mc_StrS stream() 2.137−=:= total stream entropy

mc_StrGS stream() 0.756−= gas phase entropy

mc_StrSGS stream() 1.335−= gas specific entropy

mc_StrLS stream() 1.38−= liquid entropy

mc_StrSLS stream() 3.185−= liquid specific entropy

mc_StrSS stream() 0= solid entropy

mc_StrSSS stream() 0= solid specific entropy

heat capacity, mass basis

mc_StrGICp stream() 1.887= ideal gas heat capacity

mc_StrGCp stream() 1.915= gas constant pressure heat capacity

mc_StrGCv stream() 1.416= gas constant volume heat capacity

mc_StrLCp stream() 1.737= liquid constant pressure heat capacity

mc_StrLCv stream() 1.215= liquid constant volume heat capacity

mc_StrSCp stream() 0= solid constant pressure heat capacity

speed of sound

mc_StrMSS stream() 0= mixed phase speed of sound HEM
model

mc_StrGSS stream() 266.864= gas phase

mc_StrLSS stream() 1.894 10
3×= liquid phase

Joule Thomson coefficient

mc_StrGJT stream() 1.528 10
5−×= gas phase

mc_StrLJT stream() 3.992− 10
7−×= liquid phase

compressibility, expansivity

mc_StrGIC stream() 1.003 10
5−×= gas isothermal compressibility,

1

V P
V

d

d

⋅

mc_StrLIC stream() 5.977 10
10−×= liquid isothermal compressibility

mc_StrGVE stream() 6.949− 10
3−×= gas volumetric expansivity

1

V T
V

d

d

⋅

mc_StrLVE stream() 1.522− 10
3−×= gas volumetric expansivity

density

mc_StrGD stream() 0 10
0×= gas density

mc_StrLD stream() 1.113 10
3×= liquid density

thermal conductivity

mc_StrGC stream() 0.015= gas conductivity

mc_StrLC stream() 0.285= liquid conductivity

viscosity

mc_StrGV stream() 6.261 10
6−×= gas viscosity

mc_StrLV stream() 1.649 10
4−×= liquid viscosity

surface tension

mc_StrST stream() 0.034= liquid/gas

flammability

mc_StrFML stream() 4.993= gas phase lean limit

mc_StrFMH stream() 15.082= gas phase rich limit

other stream properties

mc_StrHC stream() 4.332 10
4×= gas phase heat of combustion

compcode mc_getCC stream cpos, () 2=:= component number for component =
cpos

mc_putCC stream cpos, compcode, () 1=

mc_getMCNr "dummy"() 50= maximum number of components in a
stream

interactions This section was changed for this version.

int_pos 1:= the interaction number (i.e. the row in
the BIP window for the stream)

mc_getMBPNr "dummy"() 250= maximum number of binary pairs in a
stream (for all streams)

ci mc_getCi stream int_pos, () 1=:= component index i in interaction list

mc_putCi stream int_pos, ci, () 1=

cj mc_getCj stream int_pos, () 2=:= component index j in interaction list

mc_putCj stream int_pos, cj, () 1=

model mc_getMB stream int_pos, () 50=:= returns model number for interaction
int_pos in given stream

mc_putMB stream int_pos, model, () 1= sets the model number for a given
stream and interaction number,
int_pos

id 0:= This id is the BIP column (starting
with 0 for BIP-1) shown in the PPP
window under BIPs for the stream.

Kji mc_getBIP stream int_pos, id, () 0.08=:= value of the interaction coefficient

mc_putBIP stream int_pos, id, Kji, () 1= specifies a value for an interaction
coefficient

thermodynamic models for streams This section was changed for this version.

stream 1=

Kcode 50:= code for SRK standard model
package, see manual for other
package numbers

mc_setKM stream Kcode, () 1=

mp codes for functions below

1 fugacity
2 enthalpy
3 entropy
4 molar volume
5 viscosity

Examples for fugacity and enthalpy models below:

state 0:= vapor state

mp 1:=
fugacity model for stream, state

fmodel mc_getMP stream mp, state, () 50=:= retrieve model number

mc_setMP stream mp, fmodel, state, () 1= set model number

mp 2:= enthalpy model for stream, state

hmodel mc_getMP stream mp, state, () 50=:= retrieve model number

mc_setMP stream mp, hmodel, state, () 1= set model number

Thermodynamic calculations

stream 5:= use stream 5 for examples below

t 150= p 1.013 10
5×=

state 1:= state (0=vapor, 1=liquid, 2=solid)

phase equilibria

n 1:= pf .3:= see below

mc_PfPF stream p, pf, state, n, () 0= n th equilibrium temp at p, pf (phase
fraction), state (0=vapor, 1=liquid,
2=solid)

mc_PfTF stream t, pf, state, n, () 0= n th equil. press at t, pf, state

lf .2:= set liquid fraction

mc_LfPF stream p, lf, () 300.674= first equil. temp at liquid fraction, lf

mc_LfTF stream t, lf, () 0= first equil. pressure at liquid fraction, lf

mc_StrCPnr stream() 1= number of critical points found

cpn 1:= selected critical point

mc_StrPc stream cpn, () 5.242 10
6×= critical pressure for critical point #, cpn

mc_StrCBp stream() 0= cricondenBar pressure

mc_StrCBt stream() 0= cricondenBar temperature

mc_StrCTp stream() 4.982 10
6×= cricondenTherm pressure

mc_StrCTt stream() 457.544= cricondenTherm temperature

mc_StrAc stream() 0.208= acentric factor (mole fraction average)

phase diagrams

stream 5:=

lnr mc_PELNr stream():= Given a stream calculates the phase
diagram and returns the number of
equilibrium lines available

lnr 2=

line types

line 2:=

ltype mc_PELT stream line, ():= Given a stream and line number,
returns the line type:

bubble line1.
dew line2.
three phase line3.
fractional phase4.ltype 2=

line properties

lprop mc_PELP stream line, ():= Given a stream and line, returns the
line properties:

vapor-liquid1.
vapor-liquid-liquid2.
vapor-solid3.
liquid-solid4.
fractional phase5.

lprop 1=

equilibrium lines

The prode.dll has assumed a maximum number of points of 50 for the equilibrium lines.
This dimension cannot be changed dynamically for the variables passed to and from
Mathcad. Therefore, the mc_PELine routine leaves out the maxpt variable that is shown in
the Prode corresponding routine.

The mc_PELine function (see the first line in the program below) produces a matrix result.
Although this matrix can be used "as is" the Mathcad program, "PELine" below calls
mc_PELine and splits the matrix into the separate variables.

PELine stream line, () M mc_PELine stream line, ()←

npts M0 2, ←

T submatrix M 0, npts 1−, 0, 0, ()←

P submatrix M 0, npts 1−, 1, 1, ()←

T P npts()

:=

T1 P1 npts1() PELine stream line, ():= Given stream and equilibrium line
number, the temperature and
pressure vectors and the total
number of points are computed and
returned.

The output is shown below.

npts1 33=

T1

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

311.885

320.94

325.94

330.94

335.94

340.94

345.94

350.94

355.94

360.94

365.94

370.94

375.94

...

= P1

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

51.013·10

51.415·10

51.686·10

51.997·10

52.351·10

52.754·10

53.21·10

53.723·10

54.299·10

54.944·10

55.663·10

56.462·10

57.348·10

...

=

phase fraction lines

stream 5:=

state 0:=

fraction .5:=

PFLine stream state, fraction, () M mc_PFLine stream state, fraction, ()←

npts M0 2, ←

T submatrix M 0, npts 1−, 0, 0, ()←

P submatrix M 0, npts 1−, 1, 1, ()←

T P npts()

:=

Tf Pf nf() PFLine stream state, fraction, ():= Given stream, state, and fraction of
that state, computes the temperature
and pressure vectors along that
phase fraction, plus the number of
points on the curve.

nf 37=

Tf

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

272.895

277.895

282.895

287.895

292.895

297.895

302.895

307.895

312.895

317.895

322.895

327.895

332.895

...

= Pf

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

51.013·10

51.21·10

51.436·10

51.693·10

51.985·10

52.313·10

52.683·10

53.096·10

53.556·10

54.066·10

54.63·10

55.251·10

55.933·10

...

=

The Mathcad program, "PhaseEnv" below obtains all of the equilibrium curves which can
then be plotted.

PhaseEnv stream() lnr mc_PELNr stream()←

t
line 1−〈 〉

p
line 1−〈 〉

nline 1−() PELine stream line, ()←

ltypeline 1− mc_PELT stream line, ()←

lpropline 1− mc_PELP stream line, ()←

line 1 lnr..∈for

t p lnr n ltype lprop()

:=

stream 5:=

Tj Pj lnr nc type prop() PhaseEnv stream():=

lnr 2=

type
1

2

= nc
43

33

=

As shown in the nc vector, the lines may have different number of points. In order to
prevent curves returning to the origin, extract the data from Tj and Pj.

T0 submatrix Tj 0, nc0 1−, 0, 0, ():= P0 submatrix Pj 0, nc0 1−, 0, 0, ():=

T1 submatrix Tj 0, nc1 1−, 1, 1, ():= P1 submatrix Pj 0, nc1 1−, 1, 1, ():=

200 300 400 500
0

2 106×

4 106×

6 106×
bubble line
dew line
fraction line

Phase Diagram

Temperature, K

P
re

ss
ur

e,
 P

a

P0

P1

Pf

T0 T1, Tf,

The legend labels in the above plot were input manually supplied based on the values of
the "type" results. Also, the number of curves is determined manually using lnr as
guidance. Some streams have more equilibrium curves due to multiple liquid and/or
solids.

The PELine, PFLine, and PhaseEnv programs may be copied into or referenced by other
programs.

hydrates

hydmodel 1:= thyd 260:=

str_hyd 2:= stream for hydrate function below

 hydmodel =
1 = assume free water present, this option produces conservative but safe values
2 = calculate amount of water in liquid phase
3 = solve as multiphase equilibria, solve phase equilibria including solids as ice

Since water is not present in the stream chosen for testing, the 2 and 3 hydmodels will
return 0.

phyd mc_HPFORM str_hyd thyd, hydmodel, () 1.821 10
6×=:= returns the pressure that

hydrates form at
temperature = thyd

The HTFORM Prode function is not available in the Basic version, but the HPFORM
function should suffice.

flashes

stream 5=

mc_setSOp stream() 1= flash at standard conditions

et 0:=
estimated temperature set to 0 for
automatic

ep 0:= estimated pressure set to 0 for
automatic

mc_setOp stream 150, patm, () 1= set new operating conditions and flash

t mc_getT stream() 150=:= temperature

p mc_getP stream() 1.013 10
5×=:= pressure

h mc_StrH stream() 697.466−=:= enthalpy obtained above

entropy mc_StrS stream() 2.866−=:= entropy obtained above

sv mc_StrV stream() 1.405 10
3−×=:= volume obtained above

find temperature

mc_VPF stream p, sv, et, () 150= volume-pressure flash, et=temp guess

mc_HPF stream p, h, et, () 0= enthalpy-pressure flash, et=temp
guess

mc_SPF stream p, entropy, et, () 0= entropy-pressure flash, et=temp guess

find pressure

mc_VTF stream t, sv, ep, () 0= volume-temp flash, ep=press guess

mc_HTF stream t, h, ep, () 0= enthalpy-temp flash, ep=press guess

mc_STF stream t, entropy, ep, () 0= entropy-temp flash, ep=press guess

The flashes that determine pressure have some difficulty converging for multiphase
(liquids and solids) problems. Select another flash routine and iterate if needed.

Additional flashes for mixing and dividing streams are found at this section

Extended methods for accessing stream properties
These functions allow simultaneous setting of temperature and pressure followed by an
isothermal flash before the desired property is returned. These methods should be used with
care because of the change in the stream conditions.

stream 2:=

mc_EStrGMw stream t, p, () 16.047= gas molecular weight

mc_EStrLMw stream t, p, () 55.298= liquid molecular weight

mc_EStrLf stream t, p, () 9.572 10
4−×= mole fraction of liquid

phase 1:= position of phase, not the state code.
positions are usually vapor=1,
liquid=2, solid=3 but extra liquid and
solid phases may be present

mc_EStrPf stream phase, t, p, () 0.999= molar phase fraction of phase

mc_EStrZv stream t, p, () 0.984= gas (vapor) compressibility factor

mc_EStrH stream t, p, () 317.84−= total enthalpy

mc_EStrV stream t, p, () 0.752= total specific volume

mc_EStrGCp stream t, p, () 2.103= gas constant pressure heat capacity

mc_EStrGCv stream t, p, () 1.559= gas constant volume heat capacity

mc_EStrLCp stream t, p, () 1.709= liquid constant pressure heat capacity

mc_EStrLCv stream t, p, () 1.399= liquid constant volume heat capacity

mc_EStrGIC stream t, p, () 1.003 10
5−×= gas isothermal compressibility

mc_EStrLIC stream t, p, () 5.211 10
10−×= liquid isothermal compressibility

mc_EStrMSS stream t, p, () 0= mixture speed of sound

mc_EStrGSS stream t, p, () 0= gas speed of sound

mc_EStrLSS stream t, p, () 3.325 10
3×= liquid speed of sound

mc_EStrGJT stream t, p, () 1.466 10
5−×= gas Joule Thomson coefficient

mc_EStrLJT stream t, p, () 6.958− 10
7−×= liquid Joule Thomson coefficient

mc_EStrGVE stream t, p, () 6.939− 10
3−×= gas volumetric expansivity coefficient

mc_EStrLVE stream t, p, () 8.86− 10
4−×= liquid volumetric expansivity

coefficient
mc_EStrHC stream t, p, () 5.001 10

4×= heat of combustion

mc_EStrFML stream t, p, () 4.999= lean flammability limit of gas

mc_EStrFMH stream t, p, () 14.999= rich flammability limit of gas

mc_EStrS stream t, p, () 1.466−= total entropy

mc_EStrGD stream t, p, () 1.325= gas density

mc_EStrLD stream t, p, () 729.12= liquid density

mc_EStrGC stream t, p, () 0.016= gas thermal conductivity

mc_EStrLC stream t, p, () 0.175= liquid thermal conductivity

mc_EStrGV stream t, p, () 6.028 10
6−×= gas viscosity

mc_EStrLV stream t, p, () 1.245 10
3−×= liquid viscosity

mc_EStrST stream t, p, () 0.029= surface tension

Fugacity and derivatives This section was changed for this version.

The operations below behave like subroutines rather than functions because they return more
than one result. The Mathcad system imposes some restrictions on function input and output so
the normal C++ methods of passing variables is not possible. These restrictions are needed to
enforce the "non code" look of the Mathcad interface. As a result of these restrictions, the
functions below have slightly different argument lists than found in Prode and all of the results are
returned in a single matrix. Mathcad routines are then provided to split these results into the
appropriate variables.

The prode.dll has assumed a maximum number of components of 50 for all vector and matrix
routines. This dimension cannot be changed dynamically for the variables passed to and from
Mathcad. For greater number of components, prode.dll must be rebuilt. The constant "maxnc" in
the source code for the routines in this section must be changed to the higher number.

stream 1:=

NC mc_getCNr stream():=

t 150= These variables were defined above.

p 1.013 10
5×=

mc_setOp stream t, p, () 1=

i 0 NC 1−..:=

phase 2:=

wi mc_getW stream phase, i 1+, ():=

w

6.329 10
3−×

0.272

0.722

=

state 1:= The liquid state is being used.

New in version 1.2b: The fugacity, H, S, and V functions and their derivatives previously included
the stream number as the first argument. Now the first argument is a "process code". The code is
set using the mc_DPinit function which also loads the stream information into active memory. The
stream (process) stays loaded, making execution of StrFv and similar routines faster. This is
especially useful if the routines are repeatedly called by a program loop.

process 1:= Up to 5 processes may be defined in
the base Prode version. Processes
may be redefined with new streams.mc_DPinit process stream, () 1=

fugacity vector

fg mc_StrFv process state, t, p, w, NC, () Pa⋅:= This routine returns the fugacity vector
alone.

fg

1.488 10
7×

1.788 10
4×

1.056 10
3×

Pa=

fugacityi fgi wi⋅:= The Prode routines define the "fugacity"
variable as the fugacity coefficient times the

variable as the fugacity coefficient times the
total pressure. Thus, fugacity is obtained by
the equation on the left.

fugacity

9.416 10
4×

4.86 10
3×

762.147

Pa=

fugacity vector plus derivatives wrt T, P, w

StrFvd process state, t, p, w, NC, () M mc_StrFvd process state, t, p, w, NC, ()←

"separate the results into vectors and a matrix"

fg submatrix M 0, NC 1−, 0, 0, ()←

dfgt submatrix M 0, NC 1−, 1, 1, ()←

dfgp submatrix M 0, NC 1−, 2, 2, ()←

dfgw submatrix M 0, NC 1−, 3, 3 NC+ 1−, ()←

fg dfgt dfgp dfgw()

:=

fg dfgt dfgp dfgw() StrFvd process state, t, p, w, NC, ():= given the stream, state, temp,
press, composition vector, w,
and the number of components,
NC, return fugacity vector, fg,
and derivatives of fg wrt t, p,
and w.

Add the default Prode units as needed.

fg Pa⋅

1.488 10
7×

1.788 10
4×

1.056 10
3×

Pa= dfgt
Pa

K
⋅

2.686 10
5×

1.627 10
3×

115.318

Pa

K
⋅= dfgp

2.686 10
5×

1.627 10
3×

115.318

=

dfgw Pa⋅

2.139− 10
8×

6.41− 10
4×

1.557 10
3×

1.533− 10
8×

7.652− 10
4×

1.796 10
3×

1.202− 10
8×

2.018− 10
4×

523.217

Pa=

Other stream state variables and their derivatives
This section was changed for this version.

Functions were provided above (eg. mc_StrH) to obtain the enthalpy (H), entropy(S), and
molar volume (V) of a stream. The next routine allows the operating conditions (t, p, w) to be
specified to values other than those in the stream data file. The user selects which variable,
H, S, or V, is desired, using a string variable with the corresponding variable initial. The
program calls the appropriate mc_xxx function and then separates the variables from the
output matrix.

StrXvd X process, state, t, p, w, NC, () M mc_StrHvd process state, t, p, w, NC, ()← X "H"=if

M mc_StrSvd process state, t, p, w, NC, ()← X "S"=if

M mc_StrVvd process state, t, p, w, NC, ()← X "V"=if

x M
0〈 〉←

dxt M
1〈 〉←

dxp M
3〈 〉←

dxw submatrix M 0, 0, 3, NC 2+, ()←

x dxt dxp dxw()

:=

KJ 1000 J⋅:= Kmol 1000 mol⋅:= define new units for Mathcad

H dHt dHp dHw() StrXvd "H" process, state, t, p, w, NC, ():=

H
KJ

Kmol
⋅ 2.419− 10

4×() KJ

Kmol
⋅= the default Prode units have been

applied to the results

dHt

KJ

Kmol

K
⋅ 65.204()

KJ

Kmol K⋅
⋅=

dHp

KJ

Kmol

Pa
⋅ 8.027− 10

3×() KJ

Kmol Pa⋅
⋅=

dHw
KJ

Kmol
⋅ 8.027− 10

3× 2.153− 10
4× 2.533− 10

4×() KJ

Kmol
⋅=

S dSt dSp dSw() StrXvd "S" process, state, t, p, w, NC, ():=

S
KJ

Kmol K⋅
⋅ 121.246−()

KJ

Kmol K⋅
⋅=

dSt
KJ

Kmol K
2⋅

⋅ 0.433()
KJ

Kmol K
2⋅

⋅=

dSp
KJ

Kmol K⋅ Pa⋅
⋅ 70.635−()

KJ

Kmol K⋅ Pa⋅
⋅=

dSw
KJ

Kmol K⋅
⋅ 70.635− 105.28− 104.679−()

KJ

Kmol K⋅
⋅=

V dVt dVp dVw() StrXvd "V" process, state, t, p, w, NC, ():=

V
m

3

mol
⋅ 0.034()

m
3

mol
=

dVt
m

3

mol K⋅
⋅ 4.845 10

5−×() m
3

mol K⋅
=

dVp
m

3

mol Pa⋅
⋅ 0.073()

m
3

mol Pa⋅
⋅=

dVw
m

3

mol
⋅ 0.073 0.069 0.068()

m
3

mol
=

Operations to set/retrieve the options needed for equation of
state models and flash routine phases

See the Prode manual (see paragraph "Codes used in Prode library") and also open the Prode
drop menus for the model to view the description of the options set by the OM code variable. The
user will probably find it easier to set the options using the Prode window.

All even code values mean that only single liquid phases are allowed in the flash routines. For
multiple liquids, the code value must be odd.

stream 1:=

option mc_getOM stream() 545=:= current option set
This should = 552 for stream 1 in the
def.ppp archive. With this option
value, only L-V flashes will result.

mc_setOM stream option 1+, () 1= This changes the flashes of "stream"
to multiple liquids.

mc_setOp stream t, p, () 1= redo the flash

given a stream and phase # in range
1- getPNr() returns the phase type
(0=vapor,1=liquid,2=solid)

i 0 pnr 1−..:=

phasesi mc_StrPts stream i 1+, ():= given a stream and phase # in range
1- getPNr() returns a ANSI C string
with the description of type for
detected phase

phases

"Vapor"

"Solid"

"Solid"

"Not present"

"Not present"

= Previously, only one liquid was present

mc_setOM stream option, () 1= reset the code to single liquids

Initializing a stream This section was changed for this version.

The example will create a stream with water and methanol. The component numbers in the Prode
databank can change with updates, so always use CAS numbers when initializing by program
instead of manually using the Prode window.

methanol_id 67561:= CAS number of methanol

methanol_code mc_CompCID methanol_id() 24=:=

water_id 7732185:= CAS number of water

water_code mc_CompCID water_id() 21=:=

stream 11:=

mc_initS stream() 1= initialize a new stream

model 50:= SRK standard see Prode manual for model codes

mc_setKM stream model, () 1= set property model package

mc_putZ stream 1, .5, () 1= set total stream mole fractions

mc_putZ stream 2, .5, () 1=

mc_putCC stream 1, methanol_code, () 1= define components

mc_putCC stream 2, water_code, () 1=

mc_setS stream() 1= validate the stream

mc_loadSB stream() 1= load BIP coefficients

mc_setWm stream 1.3, () 1= set mass flow rate

temp 300:= pres patm:=

mc_setOp stream temp, pres, () 1= set temp and pres and flash

mc_edS stream() 0= view the stream then press OK

Other stream operations

stream2 1:=

stream1 10:=

mc_StrCopy stream1 stream2, () 1= copy stream2 to stream1 (note the
order!)

et mc_getT stream2() 150=:=

mc_getT stream1() 150=

mc_MixF stream1 stream2, et, () 1= flash at lower stream press, et=temp
guess for mixed stream. The sum of
the streams replaces stream1. A
new stream is NOT created.

mc_getT stream1() 329.55= mixed stream temperature

stream2 12:= the new stream to be created by Divi

wdiv .7:=

mc_Divi stream1 stream2, wdiv, () 1= Given one stream (stream1) and a
flowrate fraction (0-1) performs a divider
operation so that stream 1 is shifted
into two streams (stream1, stream2) of
the same composition, temperature and
pressure, flowrate fractions are
subdivided as
specified by wdiv (stream2 = wdiv,
stream1 = 1- wdiv)

Only one new stream is created, NOT
two. The starting stream gets
overwritten.

phase separation

stream1 5:=

stream2 13:= the new stream to be created by PSep

phase 1:= phase number to separate, NOT the
phase type

, , =

mc_PSep stream1 stream2, phase, () 1= Given a stream (stream1) performs an
isothermal flash to simulate a phase
separator and returns the specified
phase number (not phase type) to
stream2.gasstream 14:=

mc_GSep stream1 gasstream, () 1= Given a stream (stream1) performs an
isothermal flash to simulate a phase
separator and returns the gas phase to
gasstream

liqstream 15:=

mc_LSep stream1 liqstream, () 1= Given a stream (stream1) performs an
isothermal flash to simulate a phase
separator and returns the liq phase(s)
to liqstream

Polytropic compressor/expander

rate compressor efficiency

pin 10
6:= pressure in Pa

pout 2 10
6⋅:=

tin 300:= temperature in K

tout 370:=

model 2:= for a rating, model may be the
following:
2 = Huntington method
4 = Paron methodstream 2:=

mc_setOp stream tin, pin, () 1= set the inlet stream conditions

mc_PSPF stream pout, model, tout, () 0.743= efficiency rating and "stream" in
archive now contains the outlet
conditions

design model

eff .75:= polytropic efficiency given

model 1:= for a design, model may be the
following:
1 = Huntington
3 = Paron

mc_setOp stream tin, pin, () 1= reset the inlet stream conditions

mc_PSPF stream pout, model, eff, () 369.276= outlet temperature and "stream" now
contains the outlet conditions

Isentropic expansion, nozzles

stream 5:=

tin 340:= pin 2 10
6⋅:=

mc_setWm stream 1.23, () 1=

mc_setOp stream tin, pin, () 1= set stream conditions

model 2:= model options::
1 = homogeneous, equilibrium
2 = homogeneous, non equilibrium
3 = homogeneous, non equilibrium ?
4 = nonhomogeneous, non
equilibrium

pout patm:=

parameter .75:= Prode manual does not explain

mc_ISPF stream pout, model, parameter, () 0= calculated orifice area, m2

mc_getErrFlag " "() 1=

Pipe flow
The PIPE function is only available for users with an extended Prode license.

model 1:=

stream 1:=

diam
1 in⋅
m

0.025=:=

rough .00045:=

length
100 km⋅

m
1 10

5×=:=

dHeight 0:=

dHeat 0:=

mc_PIPE stream model, diam, rough, length, dHeight, dHeat, () 0=

The result above will be 0 if the user has a Basic Prode license or 1 for an Extended
license. The pressure and phase changes are made in the stream databank.

Parameters :
stream (int) inlet stream
model (int) model for fluid flow and phase equilibria (see below)
diam (double) pipe internal diameter
rough (double) parameter defining relative pipe roughness
length (double) length of this segment
dHeight (double) height difference (inlet, outlet)
dHeat (double) heat added, removed
Codes for models
1 Beggs & Brill / Hazen-Williams / AGA
additional models on request to Prode

File save

mc_AFSave "C:\ProgramData\prode\test.ppp"() 0= save modifications to a new archive

