ProdeProperties Test File

for Prode Properties ver. 1.2b

This file may be used to insure that the Mathcad prode.dll file is in the right directory and

Directions for using this worksheet

The default archive from Prode, def.ppp, will be used as the starting file.This worksheet will or 0 if not.Results Operations that set a variable will show a result of 1 if successful that i Automatic calculation has been turned off so the new user may read these instructions before

Procedure:

Calculate the entire worksheet, ctrl-F9

Select dep.ppp archive when first window appears, and click Open

When second popup window, the Prode archive, appears, it should show stream 2.Click OK.

Scroll through the worksheet to check for errors. See "Errors" below.

If the Prode window pops up, it is allowing you to view a recently created stream.Click OK

Errors:

Mathcad will show errors in red as usual. Typical errors might be caused by syntax in the a is zero, then the Prode function had an error or could not return a value.Frequen a ppp.dll error window may appear with "Error accessing component's data archive".Thi

File open commands

mc_AFOpen("C:\ProgramData\prode\def.ppp")= 1

This command sets the path to the archive file and directory. The path shown is the default

mc_Aopen("dummy")= 1 browse for an archive in the default directory

The __next __two __functions __do _not __obey __the __normal __Prode __convention __regarding __the __result __returne

Open Properties window to view edit streams

Chemical file operations

 $mc_getFCNr("dummy")= 58$ number of components in data file, should be 1634

id := 7732185CAS (use number of water internet to find search compcode is an integer from 1 to number of components in the data file id = 21id=CAS#, return compcode from database given compcode := mc_CompCID

Note: The above statement shows that the functions may be used to define a variable

mc_Compf(compcode)= "H2O" givena component code, returns component formula mc_CompN(compcode)= "WATER" component name 6CAS number of component, compare to id above compcode $= 7.7322 \cdot 10$ mc_CompID(

Note: The units are not returned by the Prode commands. Operations that show which

units

for

 mc_CompMw (compcode)= 18.0153 molecular weight

 $T_{C} := mc_CompTc$ (compcode) K = 647.09 fritical temperature $T_{C} = 64709.6008 \quad K \quad S \quad T \quad R$ multiply the function by the current Prode

mc_CompPc(compcode)= 2.2064 · 10
mc_CompVc(compcode)= 0.0031

critical pressure
critical volume

mc_CompAc(compcode)= 0.344

acentric factor

```
dipole
                                                               moment
             compcode = 6.1782 \cdot 10
mc_CompDm(
                                                               of gyration
                                                        radius
             compcode = 6.15 \cdot 10
mc CompRq
               compcode = 1511.8849
mc_CompSol
                                                                  parameter
                                                       solubility
             compcode = 13422.8364
mc_CompHf
                                                       heat of formation
             compcode = 12698.6729
                                                        Gibbs
                                                               energy
                                                                       of formation
mc CompGf
             compcode = 333.4738
                                                       enthalpy
                                                                  of fusion
mc_CompSf(
             compcode = 373.15
                                                                boiling
mc_CompNb
                                                        normal
                                                                        point
                        = 273.15
                                                                point temperature
mc_CompMp(
             compcode
                                                        melting
The following
               provide
                                           only if the phase
                                                                of interest
                                                                            is present
                        non zero values
                                                                                        at the te
tg1 := 300
                                                                     for gas/liquids
                                                        temperature
                                                                                      (above
                                                                                              fre€
ts := 260
                                                        temperature
                                                                     for solids
                                                                                (below
                                                                                         freezing)
             compcode
                          tgl = 3548.3262
mc CompVP
                                                       saturation
                                                                             at temp
                                                                   pressure
                                                                                       tal
                          tgl = 2436.3108
mc_CompHV(
             compcode
                                                       heat of vaporization
                                                                               at tgl
                          tgl = 0.0009
mc_CompLV
             compcode
                                                                        at tgl
                                                       liquid
                                                              viscosity
                                                        gas
                                                            viscosity
                                                                       at tgl
                          tgl = 9.9253 \cdot 10
mc CompGV
             compcode
                          tgl = 995.4764
                                                       liquid
                                                              density
             compcode
                                                                       at tgl
mc CompLD
             compcode
                          ts = 918.6313
                                                       solid
                                                              density
                                                                      at ts
mc_CompSD(
                          tgl = 0.6162
                                                       liquid
                                                              thermal
                                                                       conductivity
mc_CompLC(
             compcode
                                                                                     at tgl
             compcode
                          tgl = 0.0188
                                                       gas thermal
                                                                      conductivity
mc_CompGC
                                                                                   at tgl
             compcode
                          ts = 0
                                                       solid
                                                             thermal
                                                                      conductivity
                                                                                    at ts (appear
mc CompSC
mc_CompST(
             compcode
                          , tgl = 0.0718
                                                       surface
                                                                tension
                                                                         at tgl
integrated
              changes
                          between
                                            temperatures,
                                                                         t1 for pure
                                      two
                                                              t0 and
                                                                                         compon
t0 := 280
              t1 = 290
                          (t0, t1) = 18.6114
             compcode
                                                          ideal
                                                                gas
                                                                     enthalpy
                                                                               change
mc CompHG
             compcode
                          t0 t1 = 0.0653
                                                          ideal
                                                                     entropy
                                                                              change
mc_CompSG
                                                                gas
                          (t0, t1) = 42.0177
                                                                liquid
                                                                       enthalpy
mc_CompHL
                                                          ideal
                                                                                 change
             compcode
             compcode
                          t0 t1 = 0.1474
                                                          ideal
                                                                liquid
                                                                       entropy
                                                                                change
mc CompSL
ts0 := 260
              ts1 := 270
                                                          lower
                                                                 the temperature
                                                                                   range
                                                                                           < freez
```

```
mc\_CompHS ( compcode , ts0 , ts1 )= 20.5241 ideal solid enthalpy change mc\_CompSS ( compcode , ts0 , ts1 )= 0.0774 ideal solid entropy change
```

Units commands

"Units of Measurement" See section in Prode manual for a list of the units and their numeric UM := 15is used for an example pressure n_press := mc_getUMN(UM) = 20 no. of units avail. for UM $mc_getUMC(UM)=1$ present units code for UM mc_getSUMS(UM) = "Pa.a" present units string for UM unit 5 sel = 5select mc_getUMS(UM , sel)= "KPa.a" units string for (UM, sel)

list all of the units for pressure

i_ := 1 ..n_press

P_units =

 mc_getP (stream) psi = 14.6965 psi now pressure results must be multiplied $mc_setUMC(UM,1)=1$ reset to original unit for remainder of worksheet UMCR, Routines UMCS, and UMAU are not fully documented in the Prode $mc_UMRAU(UM)=1$ removes all added units for (property

Error message flags

mc_ErrMsg "

last error message,

0 = no errors,This flag only works if the Window Dialog message At the time this test file was created,

1 = errors found

mc_setErrFlag(0)=0

mc_defErrMsg(0)=
$$\blacksquare$$

This function was demonstrated at start of workshee

Atmospheric pressure

$$patm := mc_getPatm ("mc")= 1.0133 \cdot 10$$
 the pressure shouldbe 1.013105 This section is new for this version

values for enthalpy Base and entropy

The default values for the base temperature, enthalpy, and entropy may be found in the cor

```
Code Procedure
     1 = initial values specified by user (values of tref and val)
     2 = initial values are enthalpy of formation
                                            (or entropy
                                                       of formation) and temperature
                                                                                  25 C
     If code = 2, the tref and val inputs are ignored.
     mc_setHB( code , tref , val )=1 enthalpy references
     mc_setSB( code , tref , val )=1 entropy
                                                  references
                stream
Read/write
                           properties
If a write operation
                    exists,
                           it will appear under the read operation,
                                                                   using the value from the
    write operations
                     in this section
                                    are in blue
                                                highlight.
     stream := 1
     phase := 2
                                                   the phase position
                                                                      (not the phase
                                                                                      type)
     cpos := 2
                                                   cpos is the component's
                                                                            numerical
                                                                                      position
     mc_isSDef( stream )=1
                                                   given a stream returns TRUE (integer = 1) if
     name := mc_StrN( stream )= "Test Case 1"
                                              stream
                                                           name
     mc_putN( stream , name )= 1
     mc_{setOp} ( stream , 150 , patm )= 1 This is an edit operation to lower the temperature
     t := mc\_getT( stream ) = 150
                                          temperature
     mc_putT(stream, t)=1
     P := mc_getP( stream )= 1.0133 .10
     mc_putP( stream , p)=1
     pnr := mc_getPNr( "mc" )= 5
                                          returns the maximum number of phases that procedure
     mc_StrPt( stream , phase )= 1
                                     given a stream and phase # in range 1- getPNr() returns
```

The

 $i_{-} := 0 \dots pnr - 1$

given a stream and phase # in range 1- getPNr() returns

phases =

 $mc_StrSLH($ stream)=-624.1104

	only one liquid phase is present later, the flash routine code will be
<pre>mc_StrLf(stream)= 0.2598</pre>	given a stream returns the total liquid fra
<pre>mc_StrPf(stream , phase)= 0.1611</pre>	given a stream and phase phase # in ra
W := mc_getW(stream , phase , cpos)= 0.273	mole fraction of component (cpos #)
<pre>mc_putW(stream , phase , cpos , w mole f</pre>	raction w of component cpos in a phase
rate := mc_getWm(stream)=1	stream flow rate, mass/time
<pre>mc_setWm(stream , rate)= 1</pre>	
$zi := mc_getZ(stream , cpos) = 0.15$	mole fraction of component cpos in
<pre>mc_putZ(stream , cpos , zi)= 1</pre>	
<pre>mc_getCNr(stream)= 3</pre>	number of components in stream
$mc_StrZv(stream) = 0.9845$	returns the relevant compressibility factor
mc_StrMw ($stream$)= 22.9437	molecular weight of total stream
mc_StrgMw ($stream$)= 17.5627	molecular weight of gas phase
mc_StrLMw ($stream$)= 38.2718	molecular weight of liquid phase
$mc_StrV(stream) = 0.3913$	specific volume as sum of specific volume
enthalpy	
$h := mc_StrH(stream) = -434.4133$	total stream enthalpy
$mc_StrGH(stream)=-163.9053$	gas phase enthalpy
mc_StrSGH(stream)=-289.2938	gas specific enthalpy
mc_StrLH(stream)=-270.5079	liquid enthalpy

liquid specific enthalpy

entropy

entropy $= mc_StrS(stream) = -2.1368$	total	stream	entropy
mc_StrGS(stream)=-0.7565	gas	phase	entropy
<pre>mc_StrSGS(stream)=-1.3352</pre>	gas	specific	entropy
mc_StrLS(stream)=-1.3803	liquid	entropy	
mc_StrSLS(stream)=-3.1847	liquid	specific	entropy
<pre>mc_StrSS(stream)= 0</pre>	solid	entropy	
mc_StrSSS(stream)= 0	solid	specific	entropy

heat capacity, mass basis

mc_StrGICp(stream $)=1.8869$	ideal gas heat capacity
$mc_StrGCp(stream)=1.9145$	gas constant pressure heat capacity
mc_StrGCv(stream)=1.416	gas constant volume heat capacity
$mc_StrLCp(stream)=1.7373$	liquid constant pressure heat capacity
$mc_StrLCv(stream) = 1.2147$	liquid constant volume heat capacity
<pre>mc_StrSCp(stream)= 0</pre>	solid constant pressure heat capacity

speed of sound

mc_StrMSS(stream)= ■	mixed	phase	speed	of	sound	HEM	model
mc_StrGSS(stream)= 266.8638	gas p	hase					
mc_StrLSS(stream	= 1894.1038	liquid	phase					

Joule Thomson coefficient

-- G----- dtream) 0 0015

•	stream $)=1.5277 \cdot 10$ stream $)=-3.9923 \cdot 10$	gas phase liquid phase	
compressibility,	expansivity		
mc_StrGIC(stream $)=1.0026 \cdot 10^{-5}$	gas isothermal 1VPV	compressibility,
•	stream $= 5.9767 \cdot 10$ stream $= 0.0069$	liquid isothermal gas volumetric	compressibility expansivity 1VTV

density

thermal conductivity

$$mc_StrGC($$
 stream $)=0.0155$ gas conductivity $mc_StrLC($ stream $)=0.2849$ liquid conductivity

viscosity

$$mc_StrGV(stream) = 6.2611 \cdot 10$$
 gas viscosity $mc_StrLV(stream) = 0.0002$ liquid viscosity

surface tension

$$mc_StrsT(stream) = 0.0345$$
 liquid/gas

flammability

$$mc_StrFML$$
 ($stream$)= 4.9934 gas phase lean limit mc_StrFMH ($stream$)= 15.0823 gas phase rich limit

other stream properties

interactions This section was changed for this version.

model := mc_getMB(stream , int_pos)= 50 returns model number for interaction # int_

```
stream
                                     model = 1
                                                      sets the model number for a given stream
     mc putMB
                          , int_pos
     id := 0
                                             This id is the BIP column
                                                                          (starting
                                                                                  with 0 for BIP-
     Kji := mc_getBIP( stream , int_pos , id) = 0
                                                           value of the interaction
                                                                                     coefficient
                 stream int_pos id Kji = 1
                                                           specifies
                                                                     a value for an interaction
     mc putBIP
                                                                                                 CC
thermodynamic
                     models
                                for streams
     stream = 1
                                        This section
                                                      was changed
                                                                     for this
                                                                              version.
     Kcode := 50
                                                  for SRK standard
                                                                       model
                                                                              package,
                                                                                        see
                                                                                             manua
                 stream
                         Kcode = 1
     mc setKM
     mp codes
                 for functions
                               below
     1fugacity
     2enthalpy
     3entropy
     4molar volume
     5viscosity
Examples
                for fugacity
                             and enthalpy
                                            models
                                                    below:
     state := 0
                                                                  vapor
                                                                         state
     mp := 1
                                                                  fugacity
                                                                           model
                                                                                  for stream,
                                                                                               state
     fmodel := mc_getMP( stream , mp , state )= 50
                                                                  retrieve
                                                                          model
                                                                                  number
                stream mp fmodel state = 1
                                                                  set model
                                                                            number
     mp := 2
                                                                  enthalpy
                                                                            model
                                                                                   for stream,
                                                                                                state
     hmodel := mc_getMP ( stream , mp , state )= 50
                                                                  retrieve
                                                                           model
                                                                                  number
     mc_setMP stream
                          , mp , hmodel , state = 1
                                                                  set model
                                                                             number
Thermodynamic
                         calculations
     stream := 5
                                                                  use stream 5 for examples
                                                                                                bel
     t = 150
                         p = 1.0133 \cdot 10
     state := 1
                                                                        (0=vapor,
                                                                                   1=liquid,
                                                                                            2=solid)
                                                                  state
phase equilibria
```

10 / 24

helow

See

n ._ 1

pf - .3

.___

 mc_{pfpf} stream , p , pf , state , n = 292.2056 n th equilibrium temp at p, pf

 $mc_PfTF($ stream , t , pf , state , n)=0 n th equil. press at t, pf, state 1f:=.2 set liquid fraction

 $mc_Lfpf(stream , p , lf) = 300.6739$ first equil. temp at liquid fraction, If

 $mc_LfTF(stream, t, 1f) = 0$ first equil. pressure at liquid fraction, If

 $mc_StrCPnr(stream) = 1$ number of critical points found

cpn := 1 selected critical point

 $mc_StrPc(stream, cpn) = 5.2424 \cdot 10$ critical pressure for critical point #, cpn $mc_StrCBp(stream) = 0$ cricondenBar pressure

mc_StrCBt(stream)= 0 cricondenBar temperature

mc_StrCTp(stream)= 4.9822 · 10 cricondenTherm pressure

 $mc_StrCTt(stream) = 457.5439$ cricondenTherm temperature

 mc_StrAc (stream)= 0.2077 acentric factor (mole fraction average)

phase diagrams

stream := 5

line types

line = 2

line properties

 $\label{eq:lprop} \mbox{lprop} := \mbox{mc_PELP} \Big(\mbox{ stream } \mbox{, line} \Big) \qquad \mbox{Given a stream and line, returns the line properties vapor-liquid vapor-liquid-liquid vapor-solid liquid-solid fractional phase$

22 июн 2014 22:46:51 - test_ppp_1-2b.sm

lprop = 1

equilibrium lines

The prode.dll has assumed a maximum number of points of 50 for the equilibrium lines

The mc_PELine function (see the first line in the program below) produces a matrix re

The output is shown below.

npts1 =

T1 = ■ P1 = ■

phase fraction lines

stream := 5
state := 0

fraction := .5

Given stream, state, and fraction of that state, computes the temperature and pressure vector

(Tf Pf nf):=PFLine(stream , state , fraction)
$$nf = \blacksquare$$

$$Tf = \blacksquare$$
 Pf = \blacksquare

The Mathcad program, "PhaseEnv" below obtains all of the equilibrium curves which ca

As shown in the nc vector, the lines may have different number of points.In order to p

The legend labels in the above plot were input manually supplied based on the values

The PELine, PFLine, and PhaseEnv programs may be copied into or referenced by oth

hydrates

hydmodel := 1 thyd = 260 $str_hyd := 2$ for hydrate function stream below hydmodel 1 = assumethis option produces conservative but safe values free water present, 2 = calculate amount of water in liquid phase 3 = solve as multiphase equilibria, solve phase equilibria including solids as ice Since water is not present in the stream chosen for testing, the 2 and 3 hydmodels phyd := mc_HPFORM(str_hyd , thyd , hydmode etuns: 1.4208 pressure that hydrates

The HTFORM Prode is not available in the Basic version, but the HPFORM fι function

flashes

```
stream = 5
mc_setSOp(stream)=1
                                                  flash at standard
                                                                      conditions
et := 0
                                                  estimated
                                                             temperature
                                                                           set to 0 for automat
ep := 0
                                                  estimated
                                                             pressure
                                                                       set to 0 for automatic
mc_setOp( stream , 150 , patm )= 1
                                                  set new
                                                            operating
                                                                       conditions
                                                                                   and flash
t := mc_getT( stream )= 150
                                                  temperature
p:=mc_getp( stream )=1.0133 .10
                                                  pressure
h := mc_StrH(stream) = -697.4662
                                                  enthalpy
                                                            obtained
                                                                      above
entropy = mc_Strs(stream) = -2.8657
                                                           obtained
                                                                     above
                                                  entropy
sv := mc\_StrV(stream) = 0.0014
                                                  volume
                                                           obtained
                                                                     above
     temperature
find
```

<pre>mc_VPF(stream</pre>	, p , sv , et)= 150	volume-pressure	flash,	et=temp	guess
mc_HPF(stream	, p , h , et)= 150	enthalpy-pressure	flash,	et=temp	guess
mc_SPF(stream	, p , entropy , et)= 150	entropy-pressure	flash,	et=temp	guess

find pressure

The flashes

that determine

```
mc_VTF(stream, t, sv, ep) = 0
                                                  volume-temp
                                                                 flash,
                                                                        ep=press
                                                                                   guess
mc_{HTF} ( stream , t , h , ep )= 0
                                                  enthalpy-temp
                                                                  flash,
                                                                         ep=press
                                                                                    guess
                  t , entropy , ep = 0
mc_STF( stream
                                                  entropy-temp
                                                                 flash,
                                                                        ep=press
                                                                                   guess
```

some

difficulty

converging

have

for multiphase

(liqu

Additional flashes for mixing and dividing streams are found at this section

Extended methods properties for accessing stream

pressure

functions of temperature These allow simultaneous setting and pressure followed by an isothe

```
stream := 2
                                                     gas molecular
              stream (t, p) = 16.0473
                                                                     weight
mc_EStrGMw(
```

```
mc_EStrLMw ( stream , t , p)= 55.2982
                                                      liquid
                                                            molecular
                                                                       weight
mc_EStrLf(stream, t, p) = 0.001
                                                            fraction
                                                                    of liquid
                                                      mole
phase = 1
                                                      position
                                                               of phase,
                                                                          not the state
                                                                                        code
                                                      positions
                                                                     usually
                                                                             vapor=1,
                                                                                      liquid=2
mc_EStrpf(stream , phase , t , p) = 0.999
                                                      molar
                                                             phase
                                                                    fraction
                                                                             of phase
mc_EStrZv(stream, t, p) = 0.9843
                                                                   compressibility
                                                      gas
                                                           (vapor)
                                                                                   factor
mc_EStrH(stream, t, p) = 317.8398
                                                           enthalpy
                                                      total
mc_EStrV(stream, t, p) = 0.7525
                                                      total
                                                           specific
                                                                    volume
mc_EStrGCp(stream, t, p) = 2.103
                                                      gas
                                                           constant
                                                                     pressure
                                                                              heat capacity
              stream
                      t p = 1.5593
mc_EStrGCv(
                                                      gas
                                                           constant
                                                                     volume
                                                                             heat capacity
                      (t, p) = 1.7093
              stream
                                                      liquid
                                                            constant
                                                                      pressure
                                                                                heat capacity
mc_EStrLCp(
                      (t, p) = 1.3993
mc_EStrLCv(
              stream
                                                      liquid
                                                            constant
                                                                      volume
                                                                              heat capacity
              stream , t , p)=1.0028 ·10
                                                                      compressibility
                                                      gas
                                                           isothermal
mc_EStrGIC(
                       -10
                                                      liquid
                                                            isothermal
                                                                        compressibility
              stream
mc_EStrLIC(
                      t , p = 317.7238
mc_EStrMSS(
              stream
                                                      mixture
                                                               speed
                                                                      of sound
                       t , p = 318.267
mc_EStrGSS
              stream
                                                      gas
                                                           speed
                                                                  of sound
                       t p = 3324.6268
mc EStrLSS
              stream
                                                      liquid
                                                            speed
                                                                    of sound
                       (t, p) = 1.4662 \cdot 10^{-5}
                                                      gas Joule
                                                                 Thomson
                                                                            coefficient
              stream
mc_EStrGJT(
                       (t, p) = -6.9575 \cdot 10^{-7}
                                                      liquid
                                                            Joule
                                                                   Thomson
                                                                              coefficient
mc EStrLJT
                       t , p) = -0.0069
mc EStrGVE
              stream
                                                                      expansivity
                                                      gas volumetric
                                                                                  coefficient
              stream (t, p) = -0.0009
                                                      liquidvolumetric
                                                                      expansivity
                                                                                   coefficient
mc_EStrLVE(
mc_EStrHC(stream, t, p) = 50008.9256
                                                      heat
                                                           of combustion
              stream (t, p) = 4.999
                                                           flammability
                                                      lean
                                                                         limit of gas
mc EStrFML
mc EStrFMH stream t p = 14.9988
                                                           flammability
                                                      rich
                                                                        limit
                                                                             of gas
mc_Estrs(stream, t, p)=-1.4662
                                                      total
                                                           entropy
mc EStrGD( stream t p = 1.3246
                                                           density
                                                      gas
             stream t p = 729.1205
                                                      liquid
                                                            density
mc EStrLD
             stream (t, p) = 0.0161
mc_EStrGC
                                                      gas
                                                           thermal
                                                                    conductivity
            stream (t, p) = 0.1752
                                                            thermal
                                                                     conductivity
mc EStrLC
                                                      liquid
mc_EStrGV(stream, t, p) = 6.0281 \cdot 10
                                                      gas viscosity
```

```
mc_EStrLV( stream , t , p)=0.0012 liquid viscosity

mc_EStrST( stream , t , p)=0.0285 surface tension
```

Fugacity and derivatives This section was changed for this version.

The operations below behave like subroutines rather than functions because they return more

The prode.dll has assumed a maximum number of components of 50 for all vector and matr

stream := 1 $NC := mc_getCNr(stream)$

t = 150 These variables were defined above.

5
p = 1.0133 .10
mc_setOp(stream , t , p)=1
i_ := 0 ..NC -1

w = 0.2717

phase := 2

state := 1 The liquid state is being

New in version 1.2b: The fugacity, H, S, and V functions and their derivatives previously inc

used.

fugacity vector

 $\texttt{fg} := \texttt{mc_StrFv} \Big(\quad \texttt{process} \quad \text{, state} \quad \text{, } \textit{t} \\ \texttt{Thisp rowtine NCreturns} \quad \text{the fugacity} \quad \text{vector} \quad \text{alone.}$

$$fg = \begin{bmatrix} 0 & & & & \\ -6.2774 & \cdot 10 & \frac{66 & kg}{2} & & & \\ & & m & s & \\ -6.2774 & \cdot 10 & \frac{66 & kg}{2} & & \\ & & m & s & \\ \end{bmatrix}$$
The Prode routines define the "fugacity" variable a fugacity = \blacksquare

fugacity vector plus derivatives wrt T, P, w

Add the default Prode units as needed.

Other stream state variables and their derivatives

This section was changed for this version.

Functions were provided above (eg. mc_StrH)to obtain the enthalpy (H), entropy(S), and mc

$$\text{KJ} := 1000 \ \ J \qquad \text{Kmol} := 1000 \ \ \text{mol} \qquad \text{define new units for Mathcad}$$

$$\text{H} \cdot \text{dHp} \quad \text{dHw} \quad \text{J} := \text{Str} \times \text{vd} \left(\text{"H"} , \text{process} , \text{state} , \text{t}, \text{p}, \text{w}, \text{NC} \right)$$

$$\text{H} \cdot \frac{\text{KJ}}{\text{Kmol}} = 1 \ \ H \quad \frac{\text{KJ}}{\text{Kmol}} \qquad \text{the default Prode units have been applied to the }$$

$$\text{dHt} \cdot \frac{\frac{\text{KJ}}{\text{Kmol}}}{K} = 1 \quad \frac{\text{KJ}}{\text{Kmol} K}$$

$$\text{dHp} \cdot \frac{\frac{\text{KJ}}{\text{Kmol}}}{R} = 1 \quad \frac{\text{KJ}}{\text{Kmol}} = 1 \quad \frac{\text{KJ}}{\text{Kmol}} = 1 \quad \frac{\text{KJ}}{\text{Kmol} K} = 1 \quad \frac{\text{KJ}}{\text{Kmol}$$

mol K

$$dVp \frac{m}{mol Pa} = \frac{3}{m} \frac{3}{mol Pa}$$

$$dVw \frac{m}{mol} = \blacksquare$$

Operations to set/retrieve the options needed for equation of

See the Prode manual (see paragraph "Codes used in Prode library") and also open the Pr All even code values mean that only single liquid phases are allowed in the flash routines.

stream := 1

option := mc_getOM(stream)= 545 current option set

This should = 552 for stream 1 in the def.ppp arc

 mc_{setOM} (stream , option +1)=1 This changes the flashes of "stream" to multiple li

 $mc_setOp(stream, t, p)=1$ redo the flash

given a stream and phase # in range 1- getPNr() returns

 $i_{-} := 0 \dots pnr - 1$

given a stream and phase # in range 1- getPNr() returns

phases =

Previously, only one liquid was present

 $mc_setom($ stream , option)=1 reset the code to single liquids

Initializing a stream This section was changed for this version.

The example will create a stream with water and methanol. The component numbers in the

methanol_id := 67561 CAS number of methanol

```
22 июн 2014 22:46:51 - test_ppp_1-2b.sm
water_id := 7732185
```

water_code := mc_CompCID(water_id)= 21

stream := 11

mc_initS(stream)=1

model := 50 SRK standard

mc_setKM(stream , model)=1

 $mc_putz(stream , 1 , .5)=1$

mc_putZ(stream , 2 , .5)=1
mc_putCC(stream , 1 , methanol_code)=1

mc_putCC(stream , 2 , water_code)= 1

mc_sets(stream)= 1

mc_loadSB(stream)=1

 $mc_setWm(stream, 1.3)=1$

temp := 300 pres := patm

mc_setOp(stream , temp , pres)=1 mc_eds(stream)=1

CAS number of water

initialize a new stream

see Prode for model code manual

set property model package

set total stream mole fractions

define components

validate the stream

load BIP coefficients

set mass flow rate

set temp and pres and flash stream then press OK view the

stream operations Other

stream2 := 1

stream1 := 10

mc_StrCopy(stream1 , stream2)= 1 copy stream2 to stream1 (note the order!)

et := mc_getT(stream2)= 150

mc_getT(stream1)= 150

mc_MixF(stream1 , stream2 , et) = flash at lower stream press, et=temp guess for mi

mc getT (stream1) = 123.5373mixed stream temperature

stream2 := 12the new stream to be created by Divi

wdiv := .7

```
mc_Divi (stream1 , stream2 , wdiv Given one stream (stream1) and a flowrate fraction (0-1)
                                        into two streams (stream1, stream2) of the same composi
                                        specified by wdiv (stream2 = wdiv,
                                                                          stream1
                                                                                   = 1 - wdiv
```

Only one new stream is created, NOT two. The sta

```
phase separation
```

stream1 := 5

stream2 := 13phase := 1

the new stream to be created by PSep number to separate, NOT the phase type phase

mc PSep stream1 , stream2 , phaseGiven a stream (stream1) performs an isothermal flash t

gasstream := 14

mc GSep stream1 gasstream = 1 Given a stream (stream1) performs an isothermal flash t

ligstream := 15

 mc_{LSep} stream1 , liqstream)=1 Given a stream (stream1) performs an isothermal flash t

Polytropic compressor/expander

rate compressor efficiency

pin := 10 pressure in Pa pout := 2 · 10

tin := 300 temperature in K

tout := 370

model := 2for a rating, model may be the following:

2 = Huntington method stream := 2

4 = Paron method

mc_setOp(stream , tin , pin)=1 set the inlet stream conditions

mc_PSPF(stream , pout , model , tefficie) and "stream" in archive now contain

design model

```
polytropic efficiency given

model := 1

for a design, model may be the following:

1 = Huntington
3 = Paron

mc_setOp( stream , tin , pin )=1 reset the inlet stream conditions

mc_PSPF( stream , pout , model , effitlet 3 demp@Eature and "stream" now contains the
```

Isentropic expansion, nozzles

```
stream := 5
tin := 340 pin := 2.10
mc_setWm(stream, 1.23)=1
mc_setOp( stream , tin , pin )=1 set stream conditions
model := 2
                                       model options::
                                       1 = homogeneous,
                                                         equilibrium
                                       2 = homogeneous, non equilibrium
                                       3 = homogeneous,
                                                            non equilibrium
                                       4 = nonhomogeneous, non equilibrium
pout := patm
parameter := .75
                                       Prode manual does not explain
                                               calculated orifice area, m2
mc_ISPF( stream , pout , model , parameter )= 4.1708 \cdot 10 mc_getErrFlag( " ")= 1
```

Pipe flow

The PIPE function is only available for users with an extended Prode license.

```
model := 1  
stream := 1  
diam := \frac{1 \text{ in}}{m} = 0.0254  
rough := .00045  
length := \frac{100 \text{ km}}{m} = 1.10  
dHeight := 0  
dHeat := 0  
mc_PIPE( stream , model , diam , rough , length , dHeight , dHeat )= 0  
The result above will be 0 if the user has a Basic Prode license or 1 for an Extended
```

```
Parameters :
stream
      (int) inlet stream
model
       (int) model for fluid flow and phase equilibria
                                                      (see below)
diam (double) pipe internal diameter
rough (double) parameter
                           defining
                                   relative pipe roughness
length (double) length of this segment
dHeight (double) height difference
                                    (inlet, outlet)
dHeat (double) heat added, removed
Codes for models
1Beggs & Brill / Hazen-Williams
                                  / AGA
additional models on request to Prode
```

File save

 $mc_AFSave("C:\ProgramData\prode\test.ppp")=1 save modifications to a new modification to a new m$