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Summary. Logarithms, arctangents, and elliptic integrals of all three kinds 
(including complete integrals) are evaluated numerically by successive appli- 
cations of the duplication theorem. When the convergence is improved by 
including a fixed number of terms of Taylor's series, the error ultimately 
decreases by a factor of 4096 in each cycle of iteration. Except for Cauchy 
principal values there is no separation of cases according to the values of the 
variables, and no serious cancellations occur if the variables are real and 
nonnegative. Only rational operations and square roots are required. An 
appendix contains a recurrence relation and two new representations (in 
terms of elementary symmetric functions and power sums) for R-poly- 
nomials, as well as an upper bound for the error made in truncating the 
Taylor series of an R-function. 

Subject Classifications. AMS(MOS): 65D20; CR: 5.12. 

1. Introduction 

Incomplete elliptic integrals are usually computed by successive Landen or 
Gauss transformations or by infinite series. Both methods are reviewed by 
VandeVel ]-15] and Gautschi [t0, pp. 19-21, 51-67], who cite many papers 
including the work of Bulirsch on Bartky transformations for integrals of the 
third kind and the work of Luke on Pad6 approximations. Additional re- 
ferences, some of which have appeared since Gautschi's review, are [9, 8, 7, 12], 
and [6]. In the first of these Franke proposes a series calculation of the third 
integral in which convergence is achieved or improved by one preliminary 
application of the duplication theorem. In [4, pp. 343-344] Carlson gives an 
algorithm for computing the first integral by successive applications of the 
duplication theorem, which decreases the differences between the variables by a 
factor of four in each application. The resulting rate of convergence is not 
competitive with other methods. The present paper proposes computation of all 
three integrals by a modification of this procedure: after the differences between 
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2 B.C. Carlson 

the variables have been made small by successive duplications, the integrals are 
expanded in multiple Taylor series and terms up to fifth order are kept. The 
resulting algorithms require only rational operations and square roots. They 
converge fast enough, even though linearly, to compete with methods having 
quadratic convergence, unless abnormally high precision is required. Except for 
Cauchy principal values all cases (including complete, degenerate, circular, and 
hyperbolic cases) are computed by the same procedure with no need for special 
precautions to avoid toss of significant figures through cancellation. In this 
respect the method is superior to Gauss, Bartky, and Pad6 methods for the third 
integral. The precision may be chosen at will, and explicit error bounds are 
given. The algorithms are expected to be usable for complex values of the 
variables but have been tested and are stated only for real values. 

Fortran implementations of the algorithms can be obtained from the author 
on request and will be submitted for publication elsewhere. 

As a standard form for the integral of the first kind (see [6, w 9.2]), we choose 

Rv(x, y, z)=�89 S [(t + x)(t + y)(t + z)] -~ dt, (1.1) 
0 

where the variables x, y, z are nonnegative and at most one of them is 0. This 
function is symmetric and homogeneous of degree - �89  in x, y, z and is norma- 
lized so that R v ( x , x , x ) = x  -~. When two of the variables are equal, R e de- 
generates to an elementary function, 

oo 

Rc(x ' y )=Rv(x  ' y, y)=�89 ~ ( t+x)-+(t  + y ) - i  dt. (1.2) 
0 

This is a logarithm if 0 < y < x and an inverse circular function if 0___ x < y (see 
w 4). If y < 0 we define R c to be half the Cauchy principal value of the integral. 

As a standard integral of the third kind (see [16]), we choose 

oo 

Rj (x, y, z, p) = ~ ~ [(t + x)(t + y)(t + z)] - ~ (t + p) -1 d t, (1.3) 
0 

where p 4:0. This function is symmetric in x, y, z, homogeneous of degree _3  in 
x,y ,z ,  p, and normalized so that R a ( x , x , x , x ) = x  -~. I f  p < 0  the Cauchy prin- 
cipal value is taken. If p equals one of the other variables, R s degenerates to an 
integral of the second kind, 

~20 

Ro(x, y, z )=Rs(x ,  y, z, z)=-~ S (t + x)-~(t  + Y)-~(t + z) -~ dr. (1.4) 
0 

The relations of these integrals to other standard forms are given in w If x 
--0 the integrals are said to be complete. 

2. Statement of Algorithms 

The following algorithms for computing Rv, Rc, Rj ,  and R o are proved in 
w 5. The algorithm for R c is used repeatedly in the algorithm for Rj. 
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Algorithm 1. Let  x o => 0, Yo > 0, and z o > 0. For  n = 0, 1, 2 . . . .  , let 

2 ,=(x . y . )~+(x . z , )~+(y , z , )~ ,  # . = ( x . + y . + z , ) / 3 ,  (2.1) 

x , + l = ( x . + 2 , ) / 4 ,  y . + l = ( y . + 2 , ) / 4 ,  z .+1=(z ,+2 , ) /4 ,  (2.2) 

X . =  1 - (x . /# . ) ,  Y. = 1 - ( y j ~ . ) ,  Z . =  1 - (z . /~ . ) ,  (2.3) 

g , = m a x  {IX.i, [Y.], [Z.I}, s{,")=(X~+ Y,~+zm)/Zm, (m=2,  3). (2.4) 

Then ~. = O(4-")  as n ~  m. If e, < 1 then 

RF(Xo, - +  1~(2)-'1- 1~(3) 4- 1~[~(2)i2-1"- 3~r  "1 (2.5) yo, Zo)=p.  [ l + g o ,  _ ~ o ,  - 6 w ,  , - 1 1 o .  o. - - , a ,  

6 
1r,1<4(1 e" and rn~2~6(S(2))3+ 3~r - -gn)  26 ~,On , ,  n + m .  (2.6) 

Although this algori thm has linear rather  than quadrat ic  convergence, it is 
quite fast because r, is of order  4 -6"=(4096)  -". The number  of cycles required 
for given accuracy increases slowly with increasing ratio of the largest of 
x0, Y0, z0 to the next largest (see w 3). Computa t ion  of 2, can be accomplished 
with two square roots if desired, since 

(x, y,)} = x ,  y.  z./(x,  z,) ~ (y. z,) ~, x .  + O. (2.7) 

Note  that  Z .  = - X . -  11.. It may be advantageous to rewrite (2.5) in terms of E 2 
= X , Y , + X , Z . + Y . Z , = X . Y , - Z  2 and E 3 = X , Y , Z  . by using (5.10). If yo=Zo 
Algorithm 1 reduces to the following algori thm for R c. 

Algorithm 2. Let  x 0 > 0  and y o > 0 .  For  n = 0 ,  1, 2, ..., let 

2 , =  2(x.y,)~ + y . ,  x,+ 1 = ( x . + 2 . ) / 4 ,  Y.+I = (y, + 2.)/4, (2.8) 

#, = (x,  + 2 y.)/3, s. = (y. - x,)/3 U.. (2.9) 

Then s . = O ( 4 - " )  as n ~ m .  If [s.J<�89 then 

Rc(xo,  Y o ) = # ~ ( 1  -t T6s.3 2--1t~Sn3--3t~Sn4 ~_~S n9  S+r , )  ' (2.10) 

161Sn] 6 159~6 
t r . [ < - -  and r . ~ 2 ~ . ,  n ~ .  (2.11) 

1 - 2 ] s . I  

To get an alternative algori thm with simpler coefficients but  slower con- 
vergence, take (2.8) together with 

t, = 1 - (y,/x.).  (2.9 a) 

Then t , = O ( 4 - " )  as n ~ .  If [ t . [< l  then 

Rc(xo,  yo)= x2  ~ t' 2 + r. (2.10 a) 
o 2 m + l  ' 

1 It.I 6 and 1 6 (2.11a) 
Ir"l< 13 1-1t , ]  r . ~ l ~ t . ,  n ~ .  
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To compute the Cauchy principal value of Rc(x,  y) if y <0,  Algorithm 2 may 
be used after first applying the transformation 

( x - f - - ] ~ R c ( x - y , - y ) ,  x > 0 ,  y < 0 .  (2.12) Rc(x'  Y)= \ x - y !  = 

The Cauchy principal value is 0 if x - -0  and strictly positive if x >0.  

Algorithm 3. Let xo>0,  yo>0,  Zo>0, and po>0.  For n=0, 1, 2, ..., let 

2 .=(x .y . )~+(x . z . ) �89  �89 I ~ . = ( x . + y . + z . + 2 p . ) / 5 ,  (2.13) 

x.+ l = ( x .  + 2.)/4, y .+1=(y .  + 2.)/4, z.+ ~=(z.  + 2.)/4, 
(2.14) 

P.+ l =(P. + 2.)/4, 

X n = 1 - (Xn/#.), Y. = 1 -- (Y,]#n), Z .  = 1 -- (z./#.), 
(2.15) 

P. = 1 - (p./#.), 

e. = max {IX.I, II1.t, ]Z.], ]P.[}, (2.16) 

s~.m)=(X~ ' + Y."+Z'~ + 2 F~)/2 m, (m=2, 3, 4, 5), (2.17) 

%=[p.(x~+y~.  +z~)+(x .y .z . )~]  2, f l .=p . (p .+2 . )  z. (2.18) 

Then e. =O(4-")  as n--* oo. If e. < 1 then 

n--1 

Rj(xo,Yo,  Zo,Po) =3 ~ 4-mRc(a,, ,  tim) 
m = O  

+4-.#,~-k[1 j_  3e(2)_1 - 1 e(3) ~.  3 / e (2 ) i2  ..t_ 3 e(4) --7on --5On --~ton ! ~ l l ~  
3 ~(2)~(3). 4_ 3 ~(5)~_r.], (2.19) 

T 3 O n  ~  - -  ~ o  n - -  

6 3 e. 
[r.l < (1 - ~.)~' (2.20) 

r ~  - x/e(2)]3 _L. ~-3/e(3)]2 A_ --3 e(2) e(4) n-* oo. (2.21) 

Note that s~, ~) needs to be calculated for only a single value of n. A little 
algebra shows that o t , - ~ , = ( x , - p , ) ( y , - p , ) ( z , - p , ) ,  but (2.18) avoids cancel- 
lation in finding e, when p, is large. Algorithm 2 is used to calculate Rc( % ,  ~m) 
in (2.19). Since O~m--flm=O(4 -3m) the number of cycles needed in Algorithm 2 
decreases rapidly as m increases. In addition to the square roots needed in 
Algorithm 2, the square roots of x.,  y,, and z. are used in each cycle to compute 
2. and e.. Actually the square roots of x .z ,  and y.z ,  suffice to calculate both 2, 
and e, (see (2.7)), but avoiding a third square root may not be worth the extra 
multiplications and divisions. 

To compute the Cauchy principal value of Rs(x, y, z, p) if p < 0, the preceding 
algorithms may be used after first applying the transformation [16, (4.7)] 

(y - p) Rs(x, y, z, p) = (7 - Y) R s(x, Y, z, y) - 3 Re(x,  y, z) 

+ 3Rc(xz /y ,  py/y), , ; = y 4  ( z - y ) ( y - x )  (2.22) 
y - p  
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If p < 0  and the other variables are labeled so that O < x < y < z ,  then y < y < z .  
(The transformation is not limited to this case; see [16, Table 1].) 

Given strictly positive x, y, z there exists p <0  such that the Cauchy principal 
value of Rs(x, y, z, p) vanishes (see w Near the zero of Rj there will be 
cancellation between the terms on the right side of (2.22), leading to loss of 
significant figures. 

If Po = Zo Algorithm 3 reduces to the following algorithm for R D. 

Algorithm 4. Let x o > 0, Y0 > 0, and z o >0. For n =0, 1, 2, ..., let 

2.=(x .y . )~ t+(x . z . )~+(y .z . )  �89 I t . = ( x . + y . + 3 z . ) / 5 ,  (2.23) 

x. + a = (x. + 2.)/4, y. + ~ = (y. + 2.)/4, z. + ~ = (z. + 2.)/4, (2.24) 

X .  = 1 - (X./l~.), Y. = 1 - (y./lt.), Z .  = 1 - (z./#.), (2.25) 

e .=max{ tX .[ , [Y . [ , lZ . I } ,  st.m)=(X~"+Y.~+3Z~')/Zm, (re=Z, 3, 4, 5). 

Then e .=O(4-")  as n-.oo.  I f e . < l  then 

n - - i  4 - m  

RD(xo, Y0, z0) = 3 .,=o ~ z~(zm + 2,.) 

nt-zi n t J - k r ' [  .3- 3e(2)A_ 1 e(3)_l_ 3 (e(2)'t2 A- ~ 3  e(4) 
t " .  L ~ o  n ~ o .  ~ * , o n  ] ~ t l O n  

+ ~_3 ~(2)~(31 _L ~ 3  e(5) -.I- v -I 
1 3 o .  o n T 13On ~ ' n - l ,  

34 
]r,I < (1_~-) ~ , 

- 1 re(2)~3 ~_ 3 t e ( 3 ) ~ 2  ~_ 3~(2)  e(4) 
Fn ~ 10 *`~ ] ~ 10 *,On ! " 5 ~ ~ H--'-~ O0. 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

3. Numerical Examples 

To illustrate the use of Algorithms 1 and 4 we compute the lemniscate constants 
(see Todd [14]), 

1 

A=~(1 - s ' ) - � 8 9  1, 2)=Rr(0,  2, 1), 
0 

1 

B=~s2(1-s4) - �89189 1). 
0 

(3.1) 

Reduction to the standard forms (1.1) and (1.4) is accomplished by substituting s 
=t~(t +2) -~ in the first integral and s = ( t +  1) -~ in the second. Letting Xo=0 , Yo 
=2, and Zo= 1 in Algorithms 1 and 4, we find z . = � 8 9  Z . = 0 ,  Y,= 

__ I 2 ~(3) ( 5 ) - - 0 ,  and (4) (2) 2 - X , ,  E = X , ,  s ~ 2 ) _ ~ X , ,  ~n = S n  - -  S .  =(s.  ) . A programmable h a n d  

calculator showing ten significant figures gave the following values: 
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n x n z .  = p .  X n = e n )~. 

0 0.00000 00000 1.00000 00000 1.00000 00000 1.414213562 
1 0.3535533905 0.6035533905 0.4142135625 1.72903 1809 
2 0.5206463000 0.5831463000 0.1071772212 1.744399246 
3 0.5662613865 0.5818863865 0.0268523210 

Substitution in (2.5) and (2.6) yielded 

A = Re(0, 2, 1) = (1.31093 4224) [ 1 + 0.00007 2105 + 0.00000 0022 + r3] , 

I r3 ]< l .0x  10 -1~ A=1.311028778. 

Values obtained from (2.27) and (2.28) were 

B = �89 2, 1) = (0.41421 35624 + 0.13795 72872 + 0.03516 35786) 

2.252904097 
-~ 3 164 [1 + 0"00015 4510 + 0"000000053 + r3] '  

[r3[< 1.2 x 10 -9, B=0.5873344282+0.01173 56891 =0.5990701173. 

Because of roundoff error the value of A is larger than the correct value by one 
unit in the last place, and the value of B is smaller by one unit. We have not 
used the value of ~, which can now be calculated from the relation r t = 4 A B .  

We have kept terms of fifth order in the Taylor series, but higher terms can 
be generated by the recurrence relations (5.11) and (5.12). The recurrence should 
be numerically stable because the desired solution is dominant according to 
Theorem 1 in the Appendix. For very precise computations one might choose to 
keep terms of order n, where n is the number  of duplications; then r, would be 
of order (4-")". However, quadratic convergence is better for very precise 
computations (cf. Brent [1]), and the algorithms in the present paper are 
intended primarily for precision up to 20S. 

The convergence becomes slower with increasing ratio of the largest to the 
next largest o fxo ,  Yo, Zo (in Legendre's notation, with increasing value of k sin ~p 

= sin 0 sin q~). For example, in computing R v ( x o ,  Yo,  Zo) with 21 o =yo  = 10-10 
and z o = 1 (corresponding approximately to 0=q~ = 89.9996~ we find e, > 1 for 
n<3 .  To insure that I r , [<10 -1~ we must take n = 6  in Algorithm 1: 

x 6 =  y6 = 6.460349690 x 10 -3, z6 = 6.70449 0315 x 10 -3, 

X6 = I16 = 1.2440166 x 10- 2, e 6 = - Z 6 = 2.48803 32 x 10- 2, 

Rr(5 x 10 -11,  10 -1~ 1) 

= (12.36384 909) (1 + 0.00004 6427 - 0.00000 0275 + 0.00000 0009) 

= 12.36441982. 

Algorithm 4 with n = 6 yields 

R o ( 5  x 10 -11, 10 - t~  1)=3 x (11.21285 262) +0.45470162 = 34.09325 948. 
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In each case the value is smaller by one unit in the last place than a value 
obtained from ascending Landen transformations [3]. 

Algorithm 2 in conjunction with (4.9) to (4.13) is related to the algorithms for 
elementary functions given in [5]. Both methods start with successive dupli- 
cations, but the convergence is improved in [-5] by extrapolation and here by 
Taylor series. For comparison with the second example in [5, w 3] we compute 
rc/4=arctan1=Rc(1,2) [see (4.t2)]. To make [ r , [ < 2 x l 0  -1~ it suffices that 
is,] <0.015, and this is achieved for n = 2 :  

n x. y, s, 2, 

0 1.000000000 2.000000000 0.2000000000 4.828427124 
1 1.457106781 1.707106781 0.0513207883 4.861428811 
2 1.579633898 1.642133898 0.0128497663 

Rc(1, 2) = (0.78535 90144) (1 + 0.00004 9535 + 0.00000 0303 

+ 0.00000 0010 + r2) , 

1r2[<8 x 10 -11, ~=Rc(1  , 2)=0.7853981630. 
14 

Because of roundoff error this value of n/4 is smaller than the correct value by 
four units in the last place. Only three square roots were extracted (in computing 
20, 21, and #2~), compared with four in [5]. (Since the earlier calculation was 
done to higher precision, the rounded values tabulated in [5] are correct in the 
last place.) 

The relative error is of order 2 raised to the power - 1 2 n  for Algorithm 2 
and the power - n  2 for the algorithm in [5]. For highly precise computation, 
however, the power - 2 n  2 could be achieved by taking n terms of the Taylor 
series Sa,,s~ in (2.10). The recurrence relation (5.14) for % is numerically stable 
because % is a dominant solution. 

Some check values for Algorithm 2 are l t=2Rc(0  , 1)=4Rc(1 , 2)=6Rc(3,4),  
In 2=2Rc(9,  8)=3Rc(25, 16), and In 10= 18Rc(121, 40). 

To illustrate the use of Algorithm 3 we compute Rs(2, 3,4, 5). To insure 
lr,[<5 x 10 -1~ we require ~,<0.023; this is satisfied for n =3 :  

e 3 = X 3 =  9.5541245 ( -  3), 

Y3-- 4.24627 76 ( -  3), 

Z 3 = - 1.0615690 ( -  3), 

/'3 = - 6.3694160 ( - 3), 

s(31) = 4.7894504 ( -  5), 

st33) = 7.17788 50 ( -  8), 

s~ 4) = 1.49380 24 ( - 9), 

s(3 s) =6.00201 5 7 ( -  12), 

where p(q) means p x 10 q. Nine square roots were extracted in computing 
x, ~, y,~,z~ for n=O, 1, 2. Since f l , - e , , ~ ,  even for n=0 ,  only one additional 
square root is needed for each value of Rc: 
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n ~z, fin Rc(~x,~, fin) 
0 9.38215 3602 (2) 9.44215 3595 (2) 3.25780 8092 ( -  2) 
1 5.134301351(2) 5.135238852(2) 4 .412989468( -2 )  
2 4.292019536 (2) 4.29203 4184 (2) 4.82690 3996 ( - 2) 

Rs(2, 3, 4, 5) = 3 x 4.66273 6959 x 10-  2 

+ 4 -  3 (2.94375 4800)- ~ [ 1 + 0.00002 0526 

+ 0.00000 0024 + 0.00000 0001 ] 

= 0.13988 21088 + 0.00309 36879 = 0.14297 57967. 

The last number  inside the brackets includes both  terms of fourth order  in (2.19). 
The terms of fifth order  are negligible and Jr31 < 3 x 10- lz. Thir teen square roots 
were extracted in all. A check on the value of Rj  (which should be rounded to at 
most  8S) is provided by (4.3), (4.1), and the tables in [8]:  

R j(2, 3, 4, 5)= (3/I f2)[F(45 ~ 1/l /2 ) - H ( 4 5  ~ 1/lf2, 1/2)3 

= (3/1/2)(0.82601 78763 -0 .75861 84393) 

= 0.14297 5797. 

4. Other Standard Integrals 

Legendre's  s tandard integrals can be expressed as follows in terms of RF, R o, 
and R j:  

F(q~, k) ---(sin ~o) Rv(cos z (p, 1 - k 2 sin z r 1), (4.1) 

E(q), k)=(sin ~o) RF(COS 2 to, 1 - k  2 sin z (p, t) 

_�89 (p)3 Ro(cos 2 (p, 1 - k 2 sin 2 q~, 1), (4.2) 

go 

H(~o, k, n) = ~ (1 + n sin I 0) - 1 (1 - k 2 sin z 0) -+ d 0 
0 

=(sin q~)Rv(cos 2 ~o, 1 - k  2 sin z ~0, 1) 

- 3  (sin q~)a Rj(cos2 q~, 1 - k  2 sin 2 ~0, 1, 1 + n s i n  / r (4.3) 

go 
D(~o, k )=~  sin 2 0(1 - k  2 sin 20)-~dO 

0 

= �89 qo) a RD(COS 2 (p, 1 - k  2 sin 2 (p, 1), (4.4) 

K(k)=gr(o ,  1 - k  2, 1), (4.5) 

E(k)=RF(O, 1 - k  2, 1)-�89 go(o, 1 - k  2, 1). (4.6) 
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Heuman's  lambda function [11] is a variant of Legendre's third integral: 

cos 2 e sin fl cos/3 [ 
A(e, fl, q~) =(1 - cos 2 ~ sin 2 fl)~ ~_(sin q~) Re(cos 2 ~0, 1 - sin E c~ sin 2 ~0, 1) 

sin 2 ~ sin 3 ~0 
-+ 

3 (1 - cos 2 ~ sin z fl) 

( sin2 ~ sin2 tP ) ]  
�9 R j  cos2q~, 1-sin2otsin2~o, 1, 1 l_cosZots in2  fl , (4.7) 

7~ 
~- Ao(~, fl) = A(a, fl, re/2) 

= (sin fl)[Rv(0, cos 2 a, 1 ) -  ~(sin ct) 2 RD(0, cos z ct, 1)] 

�9 Rv(cos2 fl, 1 - c o s Z a  sinE fl, 1) 

--�89 cos2a sinSp Rv(0, cosZa, 1) 

�9 Rn(cos 2 fl, 1 - cos 2 ct sin Efl, 1). (4.8) 

Logarithms, inverse circular functions, and inverse hyperbolic  functions can 
be expressed in terms of  R c (see [6, pp. 163, 186]): 

t n x = ( x - 1 ) R c [ ( 1 2 ~ x ) 2 ,  x ] ,  x > 0 :  (4.9) 

a r c s i n x = x R c ( 1 - x  2, 1), - - l_<x_<l ;  (4.10) 

a r c s i n h x = x R c ( l + x  2, 1), - oo < x < o o ;  

arccos x = ( 1 - x 2 ) � 8 9  2, 1), 0_<x_< 1; (4.11) 

a r c c o s h x = ( x Z - 1 ) � 8 9  2, 1), x>=l; 

a r c t a n x = x R c ( 1 , 1 + x 2 ) ,  - o o < x < o o ;  
(4.12) 

a r c t a n h x = x R c ( 1 , 1 - x Z ) ,  - l < x < l ;  

arccot  x = Rc(X  2, x 2 + 1), 0 < X < oO ; (4.13) 

arccoth x = R c ( x  ~, x 2 - 1), x > 1. 

If x is close to 1, computa t ion  of R c gives the value of  ( l n x ) / ( x - 1 )  by (4.9) 
without the loss of significant figures that occurs when ln x and x - 1  are 
computed separately. 

Although RD(x , y, z) is easy to compute  by Algorithm 3, it is not an ideal 
choice for a s tandard function because it is not  symmetric in x, y, z. The  
symmetric s tandard integral of the second kind [6, w 9.2] is given by 

2 RG(x, y, z) = z Rv(x, y, z) - � 8 9  - x)(z  - y) RD(x, y, z) + (x y/z) �89 (4.14) 

An alternative to R s (see [16, (2.10)] and [6, w is 

2 Rn(x ,  y, z, p )=  3 RF(X, y, z)--  P R s(x, y, z, p). (4.15) 
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The variants of Legendre's integrals used by Bulirsch [2] are 

e l l ( x ,  kc)=xRv(1,  1 2 2 +kc x , l+x2) ,  

2 2 e l 2 ( x , k  c, a , b ) = a x R r ( 1 ,  1 +kc x , 1 + x  2) 

+ ~ ( b - a ) x 3 R o ( 1 ,  1 2 2 +k~ x , 1 "~-X2), 
e l 3 ( x , k ~ , p ) = X R l j l  , 1 2 z + k  c x , 1 + x  2) 

+�89 - p ) x 3 R a ( 1 ,  1 +k2c X2, 1 + x  2, 1 + p x 2 ) ,  

cel(kc, p, a, b)=aRv(O, k 2, 1)+ �89 k 2, 1, p). 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

5. Proof of the Algorithms 

Algorithms 1 and 3 are the basic ones, the other two being special cases. The 
duplication theorems for R v [6, (9.6- 1)] and R s [16, w 8] (in this reference R c is 
denoted by Rfl imply that Re(x , ,  y , ,  z,) is independent of n and 

Rs(x , ,  y. ,  z, ,  p,) = 3 Rc(o~,,, fl,,) + �88 1, Y. + 1' Zn+ 1, Pn+ 1)" (5.1) 

It follows that 

Rv(xo,  Yo, Zo)= Rv(x., Y., z.), (5.2) 

n - 1  

Rj(xo ,Yo ,  Zo, Po)= 3 ~,, 4 - m R c ( e , . , f l , . ) + 4 - " R j ( x , ,  y , , z . , p , ) .  (5.3) 
m=O 

Note that (2.2) implies x,+ 1 -  Y,+ 1 = (x , -y , ) /4 ;  similarly all differences between 
x,, y., z,, p, are reduced by a factor of four when n increases by unity. When n is 
sufficiently large, we expand the last members of (5.2) and (5.3) in multiple 
Taylor series to obtain (2.5) and (2.19). The two cases can be treated together, 
since (1.1), (1.3), and [6, (6.8-6)] identify R e and Rj as special cases of the R- 
function: 

3, x,, y,, z,), (5.4) 

R1(x, , ,y , ,  1 1 t z , , , p . )=R  ~(-i, ~,~, 1; x, ,y , , ,  z,,, p,,) 
i i i .  =R_~(g, g, �89 a ~, ~, x . ,  y , , z , ,  p , ,p , ) .  (5.5) 

The last equality follows from [6, Theorem 5.2-4] .  
The Taylor series are greatly simplified by expanding about the arithmetic 

mean p. of the variables (more precisely, by expanding in powers of relative 
deviations from the mean). Define #,, X,, Y,, ... by (2.1) and (2.3) for R v and by 
(2.13) and (2.15) for R s. Using homogeneity and (A.5) (see the Appendix), we 
find the Taylor series 

,__ - - �89  ,1 1 1. ~ (5.6) R i j x , , y , , z . ) - # .  t~_~(~,-~,~, 1 - - X , , 1 - Y , , 1 - Z , ) = ~ L 2  ~t Vm, 
m = 0  

R s ( x , , y , , z . , p , ) = i z 2 k R _ ~ ( � 8 9  ~,t �89 1 I. ~, ~, I - X . ,  1 - Y., I - Z . ,  1 - P . ,  I -P. )  

=~2 ~ ~ w,,, (5.7) 
ra=O 
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where the terms of degree m in X, ,  Y,,... consti tute the homogeneous  poly- 
nomials 

l 1 I I. 
3, 3, v, , ,=~m+l ~(3, X, ,  Y, ,Z,) ,  (5.8) 

3 T_ 1 1 1 1 1. 
3, 2,  Y, w,, 2 m + 3  m(3, X , ,  Y,. ,Z,,P.,P,).  (5.9) 

Recurrence relations obtained from (A.6) are valid for all m if we define v,. =w,,  
=0,  m <0 .  Because all parameters  are �89 the coefficients in the recurrence 
relations are constant multiples of elementary symmetric functions Er, and E 1 
= 0  because X , + Y , + Z , = O  in (5.8) and X , + Y , + Z . + 2 P . = O  in (5.9). The 
vanishing of E1 makes it attractive to express E, in terms of power sums by 
(A. 15) with ~r,,=2s~ "). In the nota t ion of  (2.4) and (2.17) we find 

Ez = _ 2s(2), E3=zs,-~3), E4 = 2(s~2))z 2s~4), 
(5.10) 

_ ( 5 )  (2) (3) E s - 2 s  . 4s, s, . 

Then the recurrence relations are 

m(2m + 1) 
v , , = ( 2 m -  2) s~.2)v,,_ z + ( 2 r n -  5) s~,3)v,,_ 3, (5.11) 

2 m - 3  

m(2m+ 3)wm=(2m_ l ) ( 2 m _  2)s(Z)w,,_ z + ( 2 m _  z (3) 3) s. w,._ 3 

+ (2 m - 4)(2 m - 5) [s~ 4) - (s~2)) 2] w m_ 4 

+ ( 2 m - 5 ) ( 2 m -  (5~ (2j (3) 7)[s,  - 2 s ,  s, ]win_5, (5.I2) 

where v0=w0 = 1 and v,. =Win=0, m < 0 .  The series in (2.5) and (2.19) come from 
these recurrence relations, and the asymptotic  formulas for r in (2.6) and (2.21) 
are merely v 6 and w 6. The  upper  bounds for lr,[ follow from (A. 10), since 

(�89 = 231/1024 < �88 (3)6/6! = 3003/1024 < 3. 

The values of v,, and w,. can be checked without recurrence by using (A.12) 
or (A. 14). For  v,. it is easy to use (A.12) and (5.10) because only E 2 and E 3 are 

_ ( m )  nonzero. For  w,. it is more  direct to put  S , , - s ,  in (A.14), but s~. 6) must be 
expressed in terms of s n(2), , " ' ,  S ( 5 )  by using (A.15) with E 6 = 0  and a,,=2s~, "~. 

Algori thm 1 reduces to Algorithm 2 if yo=zo,  which implies y , = z , ,  X , =  
_ 3 and - 2  Y . ~ 2 s . ,  e . =  2 Is.I, 3.~(2)- 3 She/2 , -  S~3)--S. ,  

1 /) __ m T_ 1 , , -ares. ,  a m = 2 m + l  ,,(3, 1; 2, - 1 ) .  (5.13) 

To find this expression for a,, we have applied [6, Theorem 5.2-4] to (5.8). By 
(A.6), a,, satisfies the recurrence relation 

m ( 2 m +  1) 
2 r n - 1  a " ~ - ( m - 1 ) a m - 1 + ( 2 m - 3 ) a m - 2 '  (5.14) 
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where a0= 1 and am=0, m<0.  By Theorem 1 in the Appendix, a m is a dominant 
solution. The first iterate of (5.14) is a special case of (5.11). 

The expression in parentheses on the right side of (2.10a) is 

oO 

Rc(1  , 1-t .)=R_~(�89 1; 1, 1 - t.)=,.~0= (�89 ~,.t~ , -  ,1  1; 0, t.). (5.15) 

The terms of this series are evaluated by [6, (6.2-5)], and the bound for Ir, I in 
(2.11 a) is obtained by noting that 1/(2m+ 1)< 1/13, m>6 .  

Equation (2.12) comes from [6, (6.9-16)], which implies 

Rc(x,  re+_i~)=( x )~ _ . n  x ~ r  R c ( x + r ' r ) + t  2 (x+r)-~ '  x>O, r>O. (5.16) 

The Cauchy principal value of Rc(x, - r )  is the arithmetic mean of the values 
with upper and lower signs, i.e. the first term on the right side. Its asymptotic 
behavior for small or large positive r is easily deduced from [6, (6.9-16)]" 

R c(x, - r) = �89 x -  ~ In (4 x/r) + 0 (r In r), 

Rc(x , - r) = x~/r + O(r - 2), 

From these relations and (2.22) we find 

e s ( x  , y, z, - r) = 3 (xyz ) -  ~ In (l/r) + O(1), 

3 
e j ( x ,  y ,  z ,  - - r ) =  - - - -  R f ( x  , y, z) + O(r- 2), 

r 

x > 0 ,  r-~O, 
(5.17) 

x ~ 0 ,  r ~ c o .  

x > 0 ,  r--* 0, 

x>=0, r ~ .  

(5.18) 

Hence Rj (x , y , z ,  - r )  changes sign at least once on 0 < r < o o  if x > 0 .  Near a 
zero there will be cancellation on the right side of (2.22) with loss of significant 
figures. If x = 0 the sign need not change since 

Rc(O , - r ) = 0 ,  r > 0 ,  
(5.t9) 

Rs(O,y,z  , - - r )~-- (6 /yz)RG(O,y ,z )<O,  r--,0. 

To get the last relation we have used (2.22) and (4.14). 
Algorithm 3 reduces to Algorithm 4 if P0 = Zo, which implies p, = z,, e, = ft,, 

and Rc(e m, fl,,)= fl2, ~. 
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Appendix 

Several new results are proved here in slightly more generality than needed for 
the purposes of this paper. Theorem 1 concerns a recurrence relation for the 
polynomial R, generated by [6, (6.6-1)], 
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l-I (1 -tzi) -b,= t. R.(b, z), (A.1) 
i = 1  n = 0  - 

k 

where c = ~ b i and (c), = F(c + n)/F(c). It will be convenient to introduce T.(b, z), 
satisfying i= i 

k 

[I(1-tzi)-b~= ~ t"T,(b,z); (A.2) 
i = 1  n = - - c ~  

T,(b,z)=(Cn@R,(b,z),. n > 0 ;  T ,=0 ,  n<0 .  (A.3) 

For example T,(fl, fl; e i~ e-i~ n>0 ,  is the Gegenbauer polynomial C,~(cos0). 
The coefficients of the recurrence relation for T, depend on the elementary 
symmetric functions E,(z), which are generated by a special case of (A.2): 

k 

l-I(1-tzi)= ~ t"(-1)"E,(z). (A.4) 
i =  1 n ~  - -  00  

Note that E, = 0 if n > k or n < 0. If b i is independent of i, then T, is symmetric in 
zl,  ..., z k and can be expressed as a polynomial in the E's; an explicit formula is 
given in Theorem 3. Even if the b's are not all equal, a similar formula in terms 
of weighted power sums is given by Theorem 4. Theorem 2 bounds the error 
made in truncating the series [6, (5.9-4)], 

(a). 
R_,(b, 1 - z ) -  R,(b, z)= ~ T,(b, z). (A.5) 

n = O  " n = 0  ( ~ n  

The set of nonnegative integers will be denoted by N, the set of all integers 
by Z, the complex plane by C, and the strictly positive real line by IR>. If Z ~  k 

we define 1 - z = ( 1 - z  1 . . . .  ,1--ZR) and Ezl=max{IzlI,...,]Zk] }. If m~N k we 
k 

define Ilmll = ~ mi. 
i = 1  

It is clear from (A.2) that T,(b, z) is independent of bj and zj if bjzj=O; i.e., bj 
and z~ may simply be omitted if either is 0. Thus there is no loss of generality in 
Theorem 1 if we assume that all b's and z's are nonzero. 

Theorem 1. Let k - l e N  and b, z e ( ~ - { 0 } )  k. The polynomials {T,(b, z): n e7/} 
defined by (A.2) satisfy the recurrence relations 

k ~ bizi 0 2 CrTm-r=O, Cr=(-1)r(m-r+i= 1 c~zi) Er, maZ. (A.6) 
r ~ O  

k 

Define c =  ~ b i and assume - c C N .  Then every nontrivial solution {y,: n~lN} 
i = 1  

of the recurrence relations 

k 

Crym_r=0, m>k, (A.7) 
t = 0  
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satisfies 

lim sup lY, I 1/, = [zi[ (A.8) 
n ~ o o  

for some value of i. If - bj r IN, 1 < j  < k, the solution y, = T, belongs to the class 
of dominant solutions for which i is such that [zi[ = Jzl. 

Remarks. Although (A.6) with m > k  is a special case of [6, (8.4-1)], the proof 
given here is simpler and allows m < k. If fl e ~ -  {0} and b i = fl, 1 < i < k, note 
that C, = ( - 1)'(m - r + rfl) Er because E r is homogeneous of degree r. 

Proof. Let 

k k 

g =  1-I (1 - tz i ) ,  G= I-[ (1- t z , )  -b,, 
i = 1  i = 1  

and verify by differentiation that 

OG k 
g t - - + G  ~ b i z i 3 g = o  

~ t  i= 1 (~Zi " 

By using (A.2) and (A.4) pick out the coefficient of t" to prove (A.6). The 
recurrence relation is a Poincar6 difference equation with characteristic poly- 
nomial 

k k 

Z (-- 1)rEr tk-r= I-[ (t--zl)" 
r = O  i = l  

Since C k = ( - 1 ) k ( m - k + c ) E k ,  the assumption - c r  implies Q # 0  for m>k.  
Then (A.7) implies (A.8) by a theorem of Perron [13, p. 548]. If -b~r 
1 < i < k, the equation 

lim sup I T,(b, z)[ 1/" = [z[ 
n ~ o o  

is proved by observing that the reciprocal radius of convergence of the series 
(A.2) is the reciprocal distance from 0 to the nearest singularity of the left side. 

Theorem2. Let a e ~  and define 2=max{la[,  1}. Let beIRk> and z e ~  k, and 
assume bz[ < 1. Define r, by 

. - 1  

R ,(b, l - z ) =  ~ Rm(b,z)+r .. (A.9) 
m = O  

Then 

tr, i < ([al), Iz]" (n.10) 
=n! (1- [z l )  a" 

Proof. By (A.5) and [6, (2.2-10), (6.2-24)], 

([a[),, <([al), [zl, =~ ~ (lal+n)~ Ir,[< ~ - . ~  Iz[" - -  - -  (a.11) 
= , ,= ,  = n! = (l+n)~ {zl'. 
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If la[ ~ 1 then (lal + n)s/(1 +n)s< 1. If [a] > 1 then (la] +n)J(1 +n)s<(la[)j(1),; this is 
proved by multiplying the inequalities ([a[ + n + p)/(1 + n + p) =< ([a] + p)/(1 + p) for 
p = 0 , 1 , . . . , s - 1 .  Hence the last series in (A.11) is majorized by the binomial 
series of (1 -[z[)  -x. 

Theorem 3. Let n~N, z~C k, and f lee .  Define T,=T,(f l  . . . . .  fi; z l . . . . .  Zk) by 
(1.2) and E 1 . . . .  , E k by (A.4). Then 

( -  t)" T.= ~ ( -  t)llmN (fl)llmll ET' "" E~'~ (A.12) 
mx!. . .mk ! ' 

where the summation extends over all m6lN k such that m 1 + 2m z + ... +kmk=n .  

Proof. By (A.2) and (A.4) the left side is the coefficient of t" in 

l - - l ( l + t z i ) - ~ = ( l + t E l + . . . + t k E k ) - B =  (--1) s ( t E l + . . . + t k E k )  ~ 
i = 1  s =O S!  

= ~ -.- ~ (--1)N"N(fl)II,, H ( te l)"~'"( tkEk)  m~ 
m l = 0  i n k = 0  ml!'"mk! 

In the last step we have made a multinomial expansion and changed the order 
of summation of the formal power series. The coefficient of t" is the right side of 
(A.12). 

Remarks. If fl= 1, T, is the complete symmetric function of z given by [6, (6.2- 
11)]. If (A.12) is divided by fl, the limit as fi-~ 0 of the left side is the power sum 

k 

(-1)"n -1 ~ z~ according to [-6, (6.2-17)]; on the right side fl-l(fl)lL,,ll~(ljml[ 
i = 1  

- I ) ! .  Both the special case and the limiting case are well known, the latter 
being due to Waring in 1770. 

Theorem4. Let n e N  and b, zcll2 k. Define T,=T,(b ,z )  by (A.2) and weighted 
power sums $1, $2, ... by 

k 

Sp=p -1 ~ bizf, p - I ~ N .  (A.13) 
i = l  

Then 

T,= 2 S-2~'-"-S~"" (1.14) 
ml ! . . .m , ! '  

where the summation extends over all m ~ N  k such that m~ + 2 m z + . . .  + n m , = n .  

Proof. The left side is the coefficient of t" in 

k k oo 

1-I (1- - tz i ) -b '=exp --i v 1 
i = 1  -- = 

When higher powers of t are omitted, this becomes exp(tS1) . . .exp(t"S,) .  Mul- 
tiply the exponential series and pick out the coefficient of t". 
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Remarks. I f  b i = - l ,  l < i < k ,  
k 

=p-~ ~ z ~ , p - l ~ N .  T h e n  
i = i  

the  left s ide  o f  (A.14) is ( - 1 ) " E , .  Def ine  ap 

rn  n 

( _  1) ,E = ~ ( _  1)ll,,ll a'~l - "  a ,  
mr!  . . . m , ! '  

(A.15) 

whe re  the  s u m m a t i o n  ex tends  o v e r  all m e n  k such  tha t  m 1 + 2 m  2 + ... +nm,=n. 
I f  n < k, (A. 15) expresses  E,, in t e rms  of  p o w e r  s u m s  (for the  inverse  r e l a t ions  see 

the  R e m a r k s  fo l lowing  the  p r o o f  of  T h e o r e m  3). I f  n > k  the  left side is 0 and  

(A.15) gives a ,  in t e rms  of  aa ,  . . . , a , _  1. I f  b i = l ,  l<i<k,  (A.14) expresses  the  
c o m p l e t e  s y m m e t r i c  func t i on  [6, (6 .2-11)]  in t e rms  of  p o w e r  sums.  B o t h  special  
cases are  well  k n o w n .  
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