Set Operations plugin

SMath Studio "1.1.8763"

INTRODUCTION

All variables and functions have a set_ prefix

A dedicated toolbox is available on the right hand side of the canvas

$\left\lvert\, \begin{array}{cc} \mathcal{P}(\mathrm{S}) & \|S\| \\ \forall & \exists \\ \in & \ni \\ \subseteq & \supseteq \\ \subsetneq \end{array}\right.$	

SETS

roster set a list of elements

$$
A:=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad B:=\left[\begin{array}{c}
5 \\
2 \\
-23
\end{array}\right] \quad \begin{aligned}
& C:=\left[\begin{array}{llll}
3 & 0 & 1 & -1
\end{array}\right] \\
& D:=\left[\begin{array}{ll}
3 & 2
\end{array}\right] \quad E:=\left[\begin{array}{llll}
3 & 2 & 4 & 1
\end{array}\right]
\end{aligned}
$$

NOTE:

- any matrix can be used as a roster set;
- duplicate entries are allowed as input; however they are counted as single items in set operations;
- anything can be an element of a roster set (numbers, strings, variables, matrices, ...)

empty set	a set without members	$\operatorname{matrix}(0 ; 0)=\operatorname{mat}(0 ; 0)$
set-builder	set definition by predicate	$\{\operatorname{variables} \mid$ condition_1; condition_2; $\boldsymbol{\operatorname { c o n d i t i o n } n}\}$

if the first argument contains the membership operator variable \in set and a roster set is given, or if the variable given is a definet set itself, the set-builder will evaluate itself
$\left.\left.\{x \in A \mid x>1 ; x \leq 3\}=\left[\begin{array}{l}2 \\ 3\end{array}\right] \quad\left\{\left.\left[\begin{array}{ll}x & y\end{array}\right] \in\left[\begin{array}{c}{\left[\begin{array}{ll}10 & -5\end{array}\right]} \\ {\left[\begin{array}{ll}-10 & 5\end{array}\right]} \\ {\left[\begin{array}{ll}4 & 2\end{array}\right]} \\ -4\end{array}\right] \right\rvert\,\right] \right\rvert\, x>-5 ; y<0\right\}=\left[\begin{array}{ll}{\left[\begin{array}{ll}-4 & -2\end{array}\right]} \\ {\left[\begin{array}{ll}10 & -5\end{array}\right]}\end{array}\right]$

$$
z:=[-5 \ldots 5] \quad P(x):=|x|>4
$$

$$
\{z \mid P(z)\}=\left[\begin{array}{c}
-5 \\
5
\end{array}\right]
$$

otherwise the set-builder won't evalute unless it is used in set membership/operations/subsets functions
$\{x \mid x>1 ; x \leq 4\}=\{x \mid x>1 ; x \leq 4\}$
$\boldsymbol{\pi} \in\{x \mid x>1 ; x \leq 4\}=1$
$5 \in\{x \mid x>1 ; x \leq 4\}=0$

QUANTIFIERS				$P(x)=\|x\|>4$
for all	$\forall 1!$	$\forall z P(z)=0$	$\forall x \in A Q(x)=0$	$Q(x):=x>3$
there exists	$\exists 1!$	$\exists z P(z)=1$	$\exists x \in A Q(x)=1$	
does not exist	$\nexists!$	$\nexists z P(z)=0$	$\nexists x \in A Q(x)=0$	
there exists one and only one	$\exists!1!$	$\exists!z P(z)=0$	$\exists!x \in A Q(x)=1$	

MEMBERSHIP

element of set	$\mathbf{I} \in \mathbf{1}$
set contains an element	- \ni !
not an element of set	- \notin
set doesn't contains an element	$1 \nexists$

$3 \in A=1$
$A \ni 3=1$
$3 \notin A=0$
$A \nexists 3=0$
$B \not \supset 3=1$
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ $B=\left[\begin{array}{c}5 \\ 2 \\ -23\end{array}\right]$
$D=\left[\begin{array}{ll}3 & 2\end{array}\right]$
$E=\left[\begin{array}{llll}3 & 2 & 4 & 1\end{array}\right]$

SUBSETS

subset		$D \subseteq A=1$	$A \subseteq E=1$	$A \subseteq B=0$
superset	! \supseteq !	$D \supseteq A=0$	$A \supseteq E=1$	$A \supseteq B=0$
proper subset	$\mathbf{!} \subsetneq$	$D \subsetneq A=1$	$A \subsetneq E=0$	$A \subsetneq B=0$
proper superset	- \supsetneq !	$D \supsetneq A=0$	$A \supsetneq E=0$	$A \supsetneq B=0$
not subset	-\$1	$D \nsubseteq A=0$	$A \nsubseteq E=0$	$A \nsubseteq B=1$
not superset	- \unrhd !	$D \nsupseteq A=1$	$A \nsupseteq E=0$	$A \nsupseteq B=1$

OPERATIONS

$$
\left|\left[\begin{array}{cc}
2 & a \\
\sqrt{2} & \sqrt{4}
\end{array}\right]\right|=3 \quad|A|=4
$$

$$
A \cap B=[2]
$$

$A \boldsymbol{\Delta} B=\left[\begin{array}{c}-23 \\ 1 \\ 3 \\ 4 \\ 5\end{array}\right]$
$\left[\begin{array}{l}{\left[\begin{array}{l}1 \\ 5\end{array}\right]} \\ {\left[\begin{array}{l}1 \\ 2\end{array}\right]}\end{array}\right.$

$$
A^{C}=!
$$

lastError = "Set 'set_Universe' is not defined."

$$
\text { set_Universe }:=\left[\begin{array}{lll}
5 & 3 & 2 \\
4 & 1 & 0
\end{array}\right] \quad A^{C}=\left[\begin{array}{l}
0 \\
5
\end{array}\right]
$$

$A \times B=\left[\begin{array}{c}{\left[\begin{array}{c}1 \\ -23\end{array}\right]} \\ {\left[\begin{array}{c}2 \\ 5\end{array}\right]} \\ {\left[\begin{array}{c}2 \\ 2\end{array}\right]} \\ {\left[\begin{array}{c}2 \\ -23\end{array}\right]} \\ \vdots\end{array}\right]$

NUMBER SETS

Natural numbers	set of natural numbers	set_N		$\frac{5}{3} \in \boldsymbol{s e t}_{\mathbf{-}} \mathbf{N}=0$
	$2 \in \boldsymbol{s e t} \mathbf{N} \mathbf{N}=1$	$-2 \in \boldsymbol{\operatorname { s e t }} \mathbf{N} \mathbf{N}=0$	$\boldsymbol{\pi} \in \boldsymbol{\operatorname { s e t }} \mathbf{N} \mathbf{N}=0$	
	$2+3 \cdot i \in \operatorname{set}_{\mathbf{-}} \mathbf{N}=0$	- $5 \cdot \mathbf{i} \in \operatorname{set}_{\mathbf{-}} \mathbf{N}=0$	$\infty \in \boldsymbol{s e t} \mathbf{N} \mathbf{N}=0$	
Integrers	set of integers	set_Z		$\frac{5}{3} \in \operatorname{set} \mathbf{z}=0$
	$2 \in \boldsymbol{s e t} \mathbf{z}=1$	$-2 \in \boldsymbol{s e t} \mathbf{z} \mathbf{z}=1$	$\boldsymbol{\pi} \in \boldsymbol{\operatorname { s e t }} \mathbf{z} \mathbf{z}=0$	
	$2+3 \cdot i \in \operatorname{set} \mathbf{z} \mathbf{z}=0$	- $5 \cdot \mathrm{i} \in \operatorname{set}_{\mathbf{z}} \mathbf{Z}=0$	$\infty \in \boldsymbol{s e t} \mathbf{z} \mathbf{z}=0$	
Rational numbers	set of rational numbers	set_Q		$\frac{5}{3} \in \operatorname{set} \mathbf{Q}=1$
	$2 \in \boldsymbol{s e t} Q=1$	$-2 \in \boldsymbol{s e t} \mathbf{Q}=1$	$\pi \in \operatorname{set} _\mathbb{Q}=0$	
	$2+3 \cdot i \in \boldsymbol{s e t} \mathbf{Q} \mathbf{Q}=0$	$-5 \cdot i \in \boldsymbol{s e t} Q=0$	$\infty \in \boldsymbol{s e t}$ - $Q=0$	
Real numbers	set of real numbers	set_R		$\frac{5}{3} \in \boldsymbol{s e t}_{-} \mathbf{R}=1$
	$2 \in \boldsymbol{s e t} R=1$	$-2 \in \boldsymbol{s e t} R=1$	$\boldsymbol{m} \in \mathbf{s e t} \mathrm{s}^{\mathrm{R}}=1$	
	$2+3 \cdot i \in \boldsymbol{s e t} R \mathbf{R}=0$	- $5 \cdot \mathrm{i} \in \operatorname{set}_{\mathbf{R}} \mathbf{R}=0$	$\infty \in \boldsymbol{s e t}$ _R $=0$	
Complex numbers	set of complex numbers	set_C		$\frac{5}{3} \in \operatorname{set}_{\mathbf{c}} \mathbf{c}=1$
	$2 \in \boldsymbol{s e t} \mathbf{c}=1$	$-2 \in \mathbf{s e t} \mathbf{C}=1$	$\boldsymbol{\pi} \in \mathbf{s e t} \mathbf{C}=1$	
	$2+3 \cdot i \in \boldsymbol{s e t} \mathbf{C}=1$	- $5 \cdot \mathrm{i} \in \boldsymbol{s e t} \mathbf{c}=1$	$\infty \in \boldsymbol{s e t}$ _ $\mathbf{C}=0$	
Imaginary numbers	set of imaginary numbers	set_I		$\frac{5}{3} \in \operatorname{set} I=0$
	$2 \in \boldsymbol{s e t} \mathbf{I}=0$	$-2 \in \boldsymbol{s e t} \mathbf{I}=0$	$\pi \in$ set_I $=0$	
	$2+3 \cdot i \in \boldsymbol{s e t} \mathbf{I}=0$		$\infty \in$ set_I $=0$	

